
Operating Systems and Middleware: Supporting Controlled Interaction by Max Hailperin is

available under a Creative Commons Attribution-ShareAlike 3.0 Unported license. © 2011, Max

Hailperin. UMGC has modified this work and it is available under the original license.

https://gustavus.edu/mcs/max/os-book/osm-rev1.1.2.pdf
https://creativecommons.org/licenses/by-sa/3.0/

Chapter 8

Files and Other Persistent
Storage

8.1 Introduction

In this chapter, you will study two different kinds of service, each of which
can be provided by either an operating system or middleware, and each of
which can take several different forms. Persistence services provide for the
retention of data for periods of time that are long enough to include system
crashes, power failures, and similar disruptions. Access services provide
application programs the means to operate on objects that are identified by
name or by other attributes, such as a portion of the contents. In principle,
these two kinds of service are independent of one another: persistent objects
can be identified by numeric address rather than by name, and naming
can be applied to non-persistent objects. However, persistence and access
services are often provided in concert, as with named files stored on disk.
Therefore, I am addressing both in a single chapter.

Any kind of object that stores data can be persistent, whether the object
is as simple as a sequence of bytes or as complex as an application-specific
object, such as the representation of a retirement portfolio in a benefits
management system. In contemporary mainstream systems, the three most
common forms of persistent storage are as follows:

• A file, which is an array of bytes that can be modified in length, as
well as read and written at any numerically specified position. (His
torically, the word has had other meanings, but this definition has
become dominant.) File storage is normally provided by operating
systems and will serve as my primary example in this chapter.

329

330 CHAPTER 8. FILES AND OTHER PERSISTENT STORAGE

• A table, which in a relational database system is a multiset of rows
(also known as tuples or records). Each row provides an appropri
ately typed value for each of the table’s columns. For example, a
table of chapters might have a title column, which holds character
strings, and a number column, which holds integers. Then an individ
ual row within that table might contain the title "Files and Other
Persistent Storage" and the number 8. Database storage is nor
mally provided by middleware, rather than by an operating system.

• A persistent object, which is an application-specific object of the sort
associated with object-oriented programming languages. For example,
Java objects can be made persistent. Persistent objects are normally
supported by middleware using one of the previous two types of per
sistent storage. Unfortunately, there are many competing approaches
to supporting persistent objects; even the Java API does not yet have
a single standardized approach. Therefore, I will not discuss persistent
objects any further.

Access services can also take a variety of forms, from a single directory of
unique names to the sort of sophisticated full-text search familiar from the
web. I will concentrate on two access options that are popular in operating
systems and middleware:

• Hierarchical directories map names into objects, each of which can
be a subdirectory, thereby forming a tree of directories (or nested file
folders). In some variants, objects can have be accessible through
multiple names, either directly (multiple names refer to one object)
or indirectly (one name refers to another name, which refers to an
object). Operating systems generally use hierarchical directories to
provide access to files.

• Indexes provide access to those objects that contain specified data.
For example, an index on a table of orders could be used to find those
rows that describe orders placed by a particular customer. Relational
database middleware commonly uses indexes to provide access to rows.
Files can also be indexed for fast searching.

The design of persistent storage mechanisms is influenced not only by
the service being provided, but also by the underlying hardware technology.
For many years the dominant technology has been moving-head magnetic
disk drives. Although solid-state flash memory is playing a rapidly increasing
role, disk drives are likely to remain important for years to come. Therefore,

331 8.1. INTRODUCTION

Section 8.2 summarizes the key performance characteristics of disk drives;
this summary serves as background for the design decisions explained in the
remainder in the chapter.

Then, in Section 8.3, I will present an external view of a persistence
service, looking at the file operations made available by POSIX operating
systems. This material is of practical value (you are more likely to use
a file system than to design one) and serves to motivate the examination
of file system design in subsequent sections. Only once you understand
what requirements a persistence service needs to meet will it make sense to
consider the internal mechanisms it uses to do so.

Moving into the underlying mechanisms for persistence, Sections 8.4 and
8.5 examine the techniques used to allocate disk space and the metadata used
to package the allocated space into usable objects. For simplicity, these two
sections make reference only to file systems. However, the techniques used
to provide space for a database table are fundamentally no different than
for a file.

Next, I turn in Section 8.6 to the primary mechanisms for locating data:
directories and indexes. Initially, I explain how these mechanisms are used
in the traditional context of file directories and database indexes, and I
point out that they are variations on the common theme of providing access
through search keys. I then give a brief example of how these mechanisms
can be merged to provide index-based file access. Before leaving the high-
level view of access services, I explain one topic of particular interest to
system administrators and application programmers: the ways in which
multiple names can refer to the same file. Moving into the internals, I then
present the data structures commonly used to store the directories or indexes
for efficient access.

Persistent storage needs to retain its integrity in the face of system
crashes. For example, no storage space should ever be both assigned to
a file and marked as free for other use, even if the system crashed just as
the space was being allocated. Similar properties are needed for directories
and indexes; if a crash occurs while a file is being renamed, the file should
have either its old name or its new name, but not both or neither. Because
Chapter 5 covered the use of logs to provide durable atomic transactions,
you have already seen the primary mechanism used to ensure integrity in
contemporary persistent storage systems. Nonetheless, I devote Section 8.7
to the topic of metadata integrity so that I can sketch the alternative ap
proaches to this problem.

Many operating systems allow file systems of varying designs to be mixed
together. A Linux system might use one disk partition to store a Linux

332 CHAPTER 8. FILES AND OTHER PERSISTENT STORAGE

specific file system, while another partition holds a file system designed for
Microsoft Windows or Mac OS X. This mixing of file systems provides a
valuable case study of polymorphism, that is, the use of multiple implemen
tations for a common interface. I devote Section 8.8 to this topic.

Finally, I give some attention to security issues in Section 8.9 before clos
ing with the usual selection of exercises, projects, and bibliographic notes.

336 CHAPTER 8. FILES AND OTHER PERSISTENT STORAGE

8.3 POSIX File API

All UNIX-like systems (including Linux and Mac OS X) support a rather
complicated set of procedures for operating on files, which has evolved over
the decades, eventually becoming part of the POSIX standard. For most
everyday purposes, programmers can and should ignore this API, instead
using one of the cleaner, higher-level APIs built on top of it, such as those
included in the Java and C++ standards. Nonetheless, I will introduce
the POSIX API here, because in many important systems, it forms the
interface between the operating system kernel and software running in user-
level application processes, even if the latter is encapsulated in libraries.

8.3.1 File Descriptors

Files are referred to in two different ways: by character-string
pathnames (such as microshell.c or /etc/passwd) and by integer file
descriptors (such as 0, 1, or 17). A pathname is a name of a file,
optionally including a sequence of directories used to reach it. A file
descriptor, on the other hand, provides no information about the file’s
name or location; it is just a featureless integer.

Many operations require file descriptors; in particular, to read data from
a file or write data into a file requires a file descriptor. If a process happens
to have inherited a file descriptor when it was forked from its parent (or
happens to have received the file descriptor in a message from another
process), then it can read or write the file without ever knowing a name for
it. Otherwise, the process can use the open procedure to obtain a file
descriptor for a named file. When the process is done with the file
descriptor, it can close it. (When a process terminates, the operating
system automatically closes any remaining open file descriptors.)

File descriptors can refer not only to open files, but also to other sources
and destinations for input and output, such as the keyboard and display
screen. Some procedures will work only for regular files, whereas others
work equally well for hardware devices, network communication ports,
and so forth. I will flag some places these distinctions matter; however,
my primary focus will be on regular files in persistent storage.

337 8.3. POSIX FILE API

By convention, all processes inherit at least three file descriptors from
their parent. These file descriptors, known as the standard input, stan
dard output, and standard error output, are numbered 0, 1, and 2, respec
tively. Rather than remembering the numbers, you should use the symbolic
names defined in unistd.h, namely, STDIN_FILENO, STDOUT_FILENO, and
STDERR_FILENO.

When you run a program from a shell and don’t make special arrange
ments, standard input generally is your keyboard, while the standard output
and error output are both directed to the shell’s window on your display
screen. You can redirect the standard input or output to a file by using the
shell’s < and > notations. For example, the shell command

ps l >my-processes

runs the ps program with the l option to generate a list of processes, as
you saw in Chapter 7. However, rather than displaying the list on your
screen, this command puts the list into a file called my-processes. The
ps program doesn’t need to know anything about this change; it writes its
output to the standard output in either case. Only the shell needs to do
something different, namely, closing the preexisting standard output and
opening the file in its place before executing the ps program. If the ps
program has any error messages to report, it outputs them to the standard
error output, which remains connected to your display screen. That way,
the error messages aren’t hidden in the my-processes file.

Figure 8.2 contains a program illustrating how the shell would operate
in the preceding example, with a child process closing its inherited stan
dard output and then opening my-processes before executing ps. The
most complicated procedure call is the one to open. The first argument
is the name of the file to open. Because this character string does not
contain any slash characters (/), the file is found in the process’s current
directory. (Every process has a current working directory, which can be
changed using the chdir procedure.) If the name contained one or more
slashes, such as alpha/beta/gamma or /etc/passwd, then the operating
system would traverse one or more directories to find the file to open. In
particular, alpha/beta/gamma would start with the current directory, look
for subdirectory alpha, look in alpha for beta, and finally look in beta
for the file gamma. Because /etc/passwd starts with a slash, the search for
this file would begin by looking in the root directory for etc and then in
that directory for passwd. In Section 8.6, I will discuss file naming further,
including related aspects of the POSIX API, such as how a file can be given
an additional name or have a name removed.

338 CHAPTER 8. FILES AND OTHER PERSISTENT STORAGE

#include <unistd.h>
#include <stdio.h>
#include <iostream>
#include <fcntl.h>
#include <sys/wait.h>
#include <sys/stat.h>
using namespace std;

int main(){
pid_t returnedValue = fork();
if(returnedValue < 0){
perror("error forking");

return -1;

} else if (returnedValue == 0){

if(close(STDOUT_FILENO) < 0){

perror("error closing standard output");

return -1;

}
// When there is no error, open returns the smallest file
// descriptor not already in use by this process, so having
// closed STDOUT_FILENO, the open should reuse that number.
if(open("my-processes", O_WRONLY | O_CREAT | O_TRUNC,

S_IRUSR | S_IWUSR) < 0){

perror("error opening my-processes");

return -1;

}

execlp("ps", "ps", "l", NULL); // ps with option letter l

perror("error executing ps");

return -1;

} else {
if(waitpid(returnedValue, 0, 0) < 0){

perror("error waiting for child");

return -1;

}
cout << "Note the parent still has the old standard output."

<< endl;
}

}

Figure 8.2: This C++ program, file-processes.cpp, illustrates how
the shell runs the command ps l >my-processes. After forking, the
child process closes the inherited standard output and in its place opens
my-processes before executing ps.

339 8.3. POSIX FILE API

The second argument to open specifies the particular way in which the
file should be opened. Here, the O_WRONLY indicates the file should be opened
for writing only (as opposed to O_RDONLY or O_RDWR), the O_CREAT indicates
that the file should be created if it doesn’t already exist (rather than signal
ing an error), and the O_TRUNC indicates that the file should be truncated to
zero length before writing; that is, all the old data (if any) should be thrown
out. Because the O_CREAT option is specified, the third argument to open is
needed; it specifies the access permissions that should be given to the file, if
it is created. In this case, the access permissions are read and write for the
owning user only, that is, rw-------.

Even setting aside open and close, not all operations on files involve
reading or writing the contents of the file. Some operate on the metadata
attributes—attributes describing a file—such as the access permissions, time
of last modification, or owner. A variety of procedures, such as chmod,
utime, and chown, allow these attributes to be set; I won’t detail them. I
will, however, illustrate one procedure that allows the attributes of a file to
be retrieved. The C++ program in Figure 8.3 uses the fstat procedure
to retrieve information about its standard input. It then reports just a
few of the attributes from the larger package of information. After printing
the owner and modification time stamp, the program checks whether the
standard input is from a regular file, as it would be if the shell was told to
redirect standard input, using <. Only in this case does the program print
out the file’s size, because the concept of size doesn’t make any sense for the
stream of input coming from the keyboard, for example. If this program is
compiled in a file called fstater, then the shell command

./fstater </etc/passwd

would give you information about the /etc/passwd file, which you could
verify using the command ls -ln /etc/passwd.

Moving on to actually reading or writing the contents of a file, the low-
level POSIX API provides three different choices, outlined here:

Explicit Positions Sequential

Memory Mapped mmap —
External pread/pwrite read/write

A file (or a portion thereof) can be mapped into the process’s address space
using the mmap procedure, allowing normal memory loads and stores to do
the reading and writing. Alternatively, the file can be left outside the address
space, and individual portions explicitly read or written using procedures

340 CHAPTER 8. FILES AND OTHER PERSISTENT STORAGE

#include <unistd.h>
#include <time.h>
#include <sys/stat.h>
#include <stdio.h>
#include <iostream>
using namespace std;

int main(){
struct stat info;
if(fstat(STDIN_FILENO, &info) < 0){
perror("Error getting info about standard input");
return -1;

}
cout << "Standard input is owned by user number "

<< info.st_uid << endl;
cout << "and was last modified " << ctime(&info.st_mtime);
if(S_ISREG(info.st_mode)){
cout << "It is a " << info.st_size << "-byte file." << endl;

} else {
cout << "It is not a regular file." << endl;

}
return 0;

}

Figure 8.3: This C++ program, fstater.cpp, describes its standard input,
using information retrieved using fstat. That information includes the
owner, last modification time, and whether the standard input is from a
regular file. In the latter case, the size of the file is also available.

341 8.3. POSIX FILE API

that copy from the file into memory or from memory into the file. One ver
sion of these procedures (pread and pwrite) needs to be told what position
within the file to read or write, whereas the other version (read and write)
operates sequentially, with each operation implicitly using the portion of the
file immediately after the preceding operation. I’ll discuss all three possi
bilities at least briefly, because each has its virtues. Because mmap is the
simplest procedure, I will start with it.

8.3.2 Mapping Files Into Virtual Memory

The use of mmap is illustrated by the C++ program in Figures 8.4 and 8.5,
which copies the contents of one file to another. The program expects to
be given the names of the input and output files as argv[1] and argv[2],
respectively. It uses the open procedure to translate these into integer file
descriptors, fd_in and fd_out. By using fstat (as in Figure 8.3), it finds
the size of the input file. This size (info.st_size) plays three roles. One
is that the program makes the output file the same size, using ftruncate.
(Despite its name, ftruncate does not necessarily make a file shorter; it sets
the file’s size, whether by truncating it or by padding it out with extra bytes
that all have the value zero.) Another use of the input file’s size is for the
two calls to mmap, which map the input and output files into virtual memory,
with read-only and write-only protections, respectively. The returned values,
addr_in and addr_out, are the virtual addresses at which the two files start
in the process’s address space. The third use of the input file size is to tell
the library procedure memcpy how many bytes to copy from addr_in to
addr_out. The memcpy procedure is a loop that executes load and store
instructions to copy from one place in virtual memory to another. (This
loop could be written explicitly in C++, but would be less clear and likely
less efficient as well, because the library routine is very carefully tuned for
speed.)

Of course, I haven’t explained all the arguments to mmap, or many other
details. My intent here is not to provide comprehensive documentation
for these API procedures, nor to provide a complete tutorial. Instead, the
example should suffice to give you some feel for file I/O using mmap; files are
opened, then mapped into the virtual address space, and then accessed as
any other memory would be, for example, using memcpy.

The underlying idea behind virtual memory-based file access (using mmap)
is that files are arrays of bytes, just like regions of virtual address space; thus,
file access can be treated as virtual memory access. The next style of file
I/O to consider accepts half of this argument (that files are arrays of bytes)

342 CHAPTER 8. FILES AND OTHER PERSISTENT STORAGE

#include <unistd.h>
#include <fcntl.h>
#include <sys/stat.h>
#include <sys/mman.h>
#include <stdio.h>
#include <string.h>
#include <iostream>
using namespace std;

int main(int argc, char *argv[]){
if(argc != 3){
cerr << "Usage: " << argv[0] << " infile outfile" << endl;
return -1;

}
int fd_in = open(argv[1], O_RDONLY);
if(fd_in < 0){
perror(argv[1]);
return -1;

}
struct stat info;
if(fstat(fd_in, &info) < 0){
perror("Error stating input file");
return -1;

}
void *addr_in =
mmap(0, info.st_size, PROT_READ, MAP_SHARED, fd_in, 0);

if(addr_in == MAP_FAILED){
perror("Error mapping input file");
return -1;

}

Figure 8.4: This is the first portion of cpmm.cpp, a C++ program using
virtual memory mapping to copy a file. The program is continued in the
next figure.

8.3. POSIX FILE API 343

int fd_out =
open(argv[2], O_RDWR | O_CREAT | O_TRUNC, S_IRUSR | S_IWUSR);

if(fd_out < 0){

perror(argv[2]);

return -1;

}
if(ftruncate(fd_out, info.st_size) < 0){

perror("Error setting output file size");

return -1;

}

void *addr_out =

mmap(0, info.st_size, PROT_WRITE, MAP_SHARED, fd_out, 0);

if(addr_out == MAP_FAILED){

perror("Error mapping output file");

return -1;

}

memcpy(addr_out, addr_in, info.st_size);

return 0;

}

Figure 8.5: This is the second portion of cpmm.cpp, a C++ program using
virtual memory mapping to copy a file. The program is continued from the
previous figure.

344 CHAPTER 8. FILES AND OTHER PERSISTENT STORAGE

but rejects the other half (that they should therefore be treated the same as
memory). In Section 8.3.4, you will see a third style of I/O, which largely
rejects even the first premise.

8.3.3 Reading and Writing Files at Specified Positions

Although convenient, accessing files as virtual memory is not without dis
advantages. In particular, writing files using mmap raises three problems:

•	 The process has no easy way to control the time at which its updates
are made persistent. Specifically, there is no simple way for the process
to ensure that a data structure is written to persistent storage only
after it is in a consistent state, rather than in the middle of a series of
related updates.

•	 A process can write a file only if it has read permission as well as write
permission, because all page faults implicitly read from the file, even
if the page faults occur in the course of writing data into the file’s
portion of virtual memory.

•	 Mapping a file into a range of addresses presumes you know how big
the file is. That isn’t well suited to situations in which you don’t know
in advance how much data will be written.

For these and other reasons, some programmers prefer to leave files separate
from the virtual memory address space and use procedures in the POSIX
API that explicitly copy data from a file into memory or from memory into a
file. The pread and pwrite procedures take as arguments a file descriptor, a
virtual address in memory, a number of bytes to copy, and a position within
the file. Each procedure copies bytes starting from the specified position
in the file and the specified address in memory—pread from the file to the
memory and pwrite from the memory to the file. These procedures are
somewhat tricky to use correctly, because they may copy fewer bytes than
requested, and because they may signal error conditions that go away upon
retrying the operation. Therefore, they always need to be put in carefully
designed loops. For this reason, I will not devote space to an example here.

8.3.4 Sequential Reading and Writing

Both mmap and the pread/pwrite pair rely on the ability to access arbitrary
positions within a file; that is, they treat the file as an array of bytes. As
such, neither interface will work for other sources of input and destinations

345 8.3. POSIX FILE API

for output, such as keyboards and network connections. Instead, one needs
to use a sequential style of I/O, where each read or write operation takes
place not at a specified position, but wherever the last one left off.

Sequential I/O is also quite convenient for many purposes, even when
used with files. For example, suppose you give the following command in a
shell:

(ls; ps) > information

This opens the file named information for writing as the standard output
and then runs two programs in succession: ls to list the files in the cur
rent directory and ps to list processes. The net result is that information
contains both listings, one after the other. The ps command does not need
to take any special steps to direct its output to the position in the file im
mediately after where ls stopped. Instead, by using the sequential I/O
features of the POSIX API, each of the two processes naturally winds up
writing each byte of output to the position after the previously written byte,
whether that previous byte was written by the same process or not.

A process can perform sequential I/O using the read and write proce
dures, which are identical to pread and pwrite, except that they do not
take an argument specifying the position within the file. Instead, each im
plicitly is directed to read or write at the current file offset and to update
that file offset. The file offset is a position for reading and writing that is
maintained by the operating system.

For special files such as keyboard input, sequential input is intrinsic,
without needing an explicit file offset. For regular files in persistent storage,
however, the file offset is a numeric position within the file (of the same
kind pread and pwrite take as arguments) that the operating system keeps
track of behind the scenes. Whenever a file is opened, the operating system
creates an open file description, a capability-like structure that includes the
file offset, normally initialized to 0. Any file descriptors descended from
that same call to open share the same open file description. For example,
in the previous example of ls and ps writing to the information file, each
of the two processes has its own file descriptor, but they are referring to the
same open file description, and hence share the same file offset. If a process
independently calls open on the same file, however, it will get a separate file
offset.

A process implicitly increases the file offset whenever it does a read or
write of length more than zero. It can also explicitly change the file offset
using the lseek procedure. The lseek procedure can set the file offset
anywhere within the file (for a regular file). As such, a process can use

346 CHAPTER 8. FILES AND OTHER PERSISTENT STORAGE

the combination of lseek and read or write to simulate pread or pwrite.
However, this simulation is prone to races if multiple threads or processes
share the same open file description, unless they use some synchronization
mechanism, such as a mutex.

Normally lseek is used only infrequently, with sequential access pre
dominating. For example, a process may read a whole file sequentially,
using read, and then use lseek to set it back to the beginning to read a
second time. The conceptual model is based on a tape drive, where ordinary
reads and writes progress sequentially through the tape, but rewinding or
skipping forward are also possible.

The read and write procedures share the same difficulty as pread and
pwrite: the necessity of looping until all bytes have been transferred. It
is much easier to use the I/O facilities defined in the standard libraries for
higher level programming languages, such as Java or C++. Behind the
scenes, these libraries are using read and write and doing the looping (and
other details) for you.

8.4 Disk Space Allocation

A file system is analogous to a virtual memory system, in that each uses a
level of indirection to map objects into storage locations. In virtual memory,
the mapping is from virtual addresses within address spaces to physical
addresses within memory. In a file system, the mapping is from positions
within files to locations in persistent storage. For efficiency, the mapping is
done at a coarse granularity, several kilobytes at a time. In virtual memory,
each page is mapped into a page frame; in a file system, each block of a
file is mapped into a storage block. (You will see that blocks are typically
several kilobytes in size, spanning multiple sectors.)

When discussing virtual memory, I remarked that the operating system
was free to assign any unused page frame of physical memory to hold each
page of virtual memory. However, although any allocation policy would be
correct, some might cause cache memory to perform better.

Persistent storage faces a similar allocation problem, but the perfor
mance issues are considerably more pronounced if the persistent storage
hardware is a disk drive, as I will assume in this section. A file system
has the freedom to store data in any otherwise unused disk block. The
choices it makes determine how accesses to files translate into accesses to
disk. You have already seen that the pattern of disk access can make a huge
performance difference (three orders of magnitude). Thus, I will examine

347 8.4. DISK SPACE ALLOCATION

allocation policies here more closely than I examined placement policies in
Chapter 6.

Before I get into allocation policies themselves and their embodiment in
allocation mechanisms, I will look at the key objectives for allocation: min
imizing wasted space and time. As you will see in Sections 8.4.1 and 8.4.2,
these goals can be expressed as minimizing fragmentation and maximizing
locality.

8.4.1 Fragmentation

The word fragmentation is used in two different senses. First, consider the
definition I will not be using. For some authors, fragmentation refers to
the degree to which a file is stored in multiple noncontiguous regions of the
disk. A file that is stored in a single contiguous sequence of disk blocks
(called an extent) is not fragmented at all, by this definition. A file stored
in two separate extents would be slightly fragmented. If the file’s blocks are
individual scattered across the disk, then the file is maximally fragmented,
by this definition. A defragmentation program moves files’ blocks around
on disk so as to leave each file in a single extent. To allow future allocations
to be non-fragmented, the defragmentation program also arranges the files
so that the free space on the disk is clustered together.

The contiguity and sequentiality issues mentioned in the preceding para
graph are important for speed of access; I will discuss them in Section 8.4.2
under the broader heading of locality. However, I will not refer to them as
fragmentation, because I will use another definition that is well established
in the operating systems field. By this alternative definition, fragmentation
concerns space efficiency. A highly fragmented disk is one in which a large
proportion of the storage capacity is unavailable for allocation to files. I will
explain in the remainder of this subsection the phenomena that cause space
to be unusable.

One source of waste is that space is allocated only in integer multiples
of some file system block size. For example, a file system might allocate
space only in units of 4 KB. A file that is too big to fit in a single 4-KB unit
will be allocated 8 KB of space—even if it is only a single byte larger than
4 KB. The unused space in the last file block is called internal fragmentation.
The amount of internal fragmentation depends not only on the desired file
sizes, but also on the file system block size. As an analogy, consider parallel
parking in an area where individual parking spaces are marked with painted
lines, and where drivers actually respect those lines. The amount of wasted
space depends on the cars being parked, but it also depends on how far

348 CHAPTER 8. FILES AND OTHER PERSISTENT STORAGE

apart the lines are painted. Larger parking spaces will generally result in
more wasted space.

The file system block size is always some multiple of the underlying disk
drive’s sector size; no file system ever subdivides the space within a single
disk sector. Generally the file system blocks span several consecutive disk
sectors; for example, eight disk sectors of 512 bytes each might be grouped
into each 4-KB file system block. Larger file system blocks cause more
internal fragmentation, but are advantageous from other perspectives. In
particular, you will see that a larger block size tends to reduce external
fragmentation. Additionally, a larger block size implies that there are fewer
blocks to keep track of, which reduces bookkeeping overhead.

Once a space allocation request has been rounded up to the next multiple
of the block size, the operating system must locate the appropriate number
of unused blocks. In order to read or write the file as quickly as possible,
the blocks should be in a single consecutive extent. For the moment, I will
consider this to be an absolute requirement. Later, I will consider relaxing
it.

Continuing with my earlier example, suppose you need space for a file
that is just one byte larger than 4 KB and hence has been rounded up to
two 4-KB blocks. The new requirement of contiguity means that you are
looking for somewhere on the disk where two consecutive 4-KB blocks are
free. Perhaps you are out of luck. Maybe the disk is only half full, but
the half that is full consists of every even-numbered file system block with
all the odd-numbered ones available for use. This situation, where there is
lots of space available but not enough grouped together in any one place,
is external fragmentation. So long as you insist on contiguous allocation,
external fragmentation is another cause of wasted space: blocks that are
free for use, but are too scattered to be usable.

On the surface, it appears that external fragmentation would result only
from very strange circumstances. My example, in which every second file
system block is occupied, would certainly fit that description. To start with,
it implies that you allocated lots of small files and now suddenly want to
allocate a larger file. Second, it implies that you either were really dumb in
choosing where those small files went (skipping every other block), or had
phenomenally bad luck in the user’s choice of which files to delete.

However, external fragmentation can occur from much more plausible
circumstances. In particular, you can wind up with only small gaps of space
available even if all the allocations have been for much larger amounts of
space and even if the previous allocations were done without leaving silly
gaps for no reason.

349 8.4. DISK SPACE ALLOCATION

For a small scenario that illustrates the phenomenon, consider a disk that
has room for only 14 file system blocks. Suppose you start by allocating three
four-block files. At this point, the space allocation might look as follows:

file1 file2 file3

0 4 8 12 14

Suppose file2 is now deleted, resulting in a four-block gap, with another two
blocks free at the end of the disk:

file1 file3

0 4 8 12 14

If, at this point, a three-block file (file4) is created, it can go into the four-
block gap, leaving one block unused:

file1 file4 file3

0 4 7 8 12 14

Now there are three unused blocks, but there is no way to satisfy another
three-block allocation request, because the three unused blocks are broken
up, with one block between files 4 and 3, and two more blocks at the end of
the disk.

Notice that you wound up with a one-block gap not because a one-block
file was created and later deleted (or because of stupid allocation), but
because a four-block file was replaced by a three-block file. The resulting
gap is the difference in the file sizes. This means that even if a disk is used
exclusively for storing large files, it may still wind up with small gaps, which
cannot hold any large files. This is the fundamental problem of external
fragmentation.

Returning to the parallel parking analogy, consider an area where no
parking spaces are marked on the pavement, leaving drivers to allocate their
own spaces. Even if they are courteous enough not to leave any pointless
gaps, small gaps will arise as cars of varying sizes come and go. A large car
may vacate a space, which is then taken by a smaller car. The result is a
gap equal to the difference in car sizes, too small for even the smallest cars
to use. If this situation happens repeatedly at different spots along a block,
there may be enough total wasted space to accommodate a car, but not all
in one place.

350 CHAPTER 8. FILES AND OTHER PERSISTENT STORAGE

Earlier, I mentioned that increasing the file system block size, which in
creases internal fragmentation, decreases external fragmentation. The rea
son for this is that with a larger block size, there is less variability in the
amount of space being allocated. Files that might have different sizes when
rounded up to the next kilobyte (say, 14 KB and 15 KB) may have the same
size when rounded to the next multiple of 4 KB (in this case, 16 KB and
16 KB). Reduced variability reduces external fragmentation; in the extreme
case, no external fragmentation at all occurs if the files are all allocated the
same amount of space.

Suppose you relax the requirement that a file be allocated a single extent
of the disk. Using file metadata, it is possible to store different blocks of
the file in different locations, much as a virtual memory address space can
be scattered throughout physical memory. Does this mean that external
fragmentation is a nonissue? No, because for performance reasons, you will
still want to allocate the file contiguously as much as possible. Therefore,
external fragmentation will simply change from being a space-efficiency issue
(free space that cannot be used) to a time-efficiency issue (free space that
cannot be used without file access becoming slower). This gets us into the
next topic, locality.

8.4.2 Locality

Recall that disks provide their fastest performance when asked to access a
large number of consecutive sectors in a single request at a location nearby
to the previous access request. Most file system designers have interpreted
these conditions for fast access as implying the following locality guidelines
for space allocation:

1. The space allocated for each file should be broken into as few extents
as possible.

2. If a file needs to be allocated more than one extent, each extent should
be nearby to the previous one.

3. Files that	 are commonly used in close succession (or concurrently)
should be placed near one another.

The connection between fast access and these three guidelines is based
on an implicit assumption that the computer system’s workload largely con
sists of accessing one file at a time and reading or writing each file in its
entirety, from beginning to end. In some cases, this is a reasonable approx
imation to the truth, and so the preceding locality guidelines do result in

351 8.4. DISK SPACE ALLOCATION

good performance. However, it is important to remember that the guidelines
incorporate an assumption about the workload as well as the disk perfor
mance characteristics. For some workloads, a different allocation strategy
may be appropriate. In particular, as computing workloads are consolidated
onto a smaller number of computers (using techniques such as virtualization,
as discussed in Section 7.5.2), file accesses become more jumbled.

As an example of a different allocation strategy that might make sense,
Rosenblum and Ousterhout suggested that blocks should be allocated space
on disk in the order they are written, without regard to what files they
belong to or what positions they occupy within those files. By issuing a large
number of consecutive writes to the disk in a single operation, this allows
top performance for writing. Even if the application software is concurrently
writing to multiple files, and doing so at random positions within those files,
the write operations issued to disk will be optimal, unlike with the more
conventional file layout. Of course, read accesses will be efficient only if
they are performed in the same order as the writes were. Fortunately, some
workloads do perform reads in the same order as writes, and some other
workloads do not need efficient read access. In particular, the efficiency of
read access is not critical in a workload that reads most disk blocks either
never or repeatedly. Those blocks that are never read are not a problem,
and those that are read repeatedly need only suffer the cost of disk access
time once and can thereafter be kept in RAM.

Returning to the more mainstream strategy listed at the beginning of
this subsection, the primary open question is how to identify files that are
likely to be accessed contemporaneously, so as to place them nearby to one
another on disk. One approach, used in UNIX file systems, is to assume
that files are commonly accessed in conjunction with their parent directory
or with other (sibling) files in the same directory. Another approach is to not
base the file placement on assumptions, but rather on observed behavior.
(One assumption remains: that future behavior will be like past behavior.)
For example, Microsoft introduced a feature into Windows with the XP
version, in which the system observes the order of file accesses at system
boot time and also at application startup time, and then reorganizes the
disk space allocation based on those observed access orders. Mac OS X does
something similar as of version 10.3: it measures which files are heavily used
and groups them together.

352 CHAPTER 8. FILES AND OTHER PERSISTENT STORAGE

8.4.3 Allocation Policies and Mechanisms

Having seen the considerations influencing disk space allocation (fragmen
tation and locality), you are now in a better position to appreciate the
specific allocation mechanism used by any particular file system and the
policy choices embodied in that mechanism. The full range of alternatives
found in different file systems is too broad to consider in any detail here,
but I will sketch some representative options.

Each file system has some way of keeping track of which disk blocks are
in use and which are free to be allocated. The most common representation
for this information is a bitmap, that is, an array of bits, one per disk block,
with bit i indicating whether block i is in use. With a bitmap, it is easy
to look for space in one particular region of the disk, but slow to search an
entire large disk for a desired size extent of free space.

Many UNIX and Linux file systems use a slight variant on the bitmap
approach. Linux’s ext3fs file system can serve as an example. The overall
disk space is divided into modest-sized chunks known as block groups. On
a system with 4-KB disk blocks, a block group might encompass 128 MB.
Each block group has its own bitmap, indicating which blocks within that
group are free. (In Exercise 8.8, you can show that in the example given,
each block group’s bitmap fits within a single block.) Summary information
for the file system as a whole indicates how much free space each block group
has, but not the specific location of the free space within the block groups.
Thus, allocation can be done in two steps: first find a suitable block group
using the summary information, and then find a suitable collection of blocks
within the block group, using its bitmap.

I remarked earlier that UNIX and Linux file systems generally try to
allocate each file near its parent directory. In particular, regular files are
placed in the same block group as the parent directory, provided that there
is any space in that group. If this rule were also followed for subdirectories,
the result would be an attempt to cram the entire file system into one block
group. Therefore, these file systems use an alternative rule to choose a block
group for a subdirectory.

When creating a subdirectory, early versions of ext3fs and similar file
systems selected a block group containing a lot of free space. This spread
the directories, with their corresponding files, relatively evenly through the
whole disk. Because each new directory went into a block group with lots
of free space, there was a good chance that the files contained in that di
rectory would fit in the same block group with it. However, traversing a
directory tree could take a long time with these allocation policies, because

353 8.4. DISK SPACE ALLOCATION

each directory might be nowhere near its parent directory.
Therefore, more recent versions of ext3fs and similar file systems have

used a different allocation policy for directories, developed by Orlov. A
subdirectory is allocated in the parent directory’s block group, provided
that it doesn’t get too crowded. Failing that, the allocation policy looks
through the subsequent block groups for one that isn’t too crowded. This
preserves locality across entire directory trees without stuffing any block
group so full of directories that the corresponding files won’t fit. The result
can be significant performance improvements for workloads that traverse
directory trees.

Once a file system decides to locate a file within a particular block group,
it still needs to allocate one or more extents of disk blocks to hold the file’s
data. (Hopefully those extents will all lie within the chosen block group,
although there needs to be a way for large files to escape from the confines
of a single block group.)

The biggest challenge in allocating extents is knowing how big an extent
to allocate. Some older file systems required application programmers to
specify each file’s size at the time the file was created, so that the system
could allocate an extent of corresponding size. However, modern systems
don’t work this way; instead, each file grows automatically to accommodate
the data written into it.

To meet this challenge, modern operating systems use a technique known
as delayed allocation. As background, you need to understand that operat
ing systems do not normally write data to disk the moment an application
program issues a write request. Instead, the data is stored in RAM and
written back to disk later. This delay in writing yields two options for when
the disk space is allocated: when the data goes into RAM or later when it
gets written to disk.

Without delayed allocation, the operating system needs to choose a disk
block to hold the data at the time it goes into RAM. The system tags the
data in RAM with the disk block in which that data belongs. Later, the
system writes the data out to the specified location on disk. This approach
is simple, but requires the operating system to allocate space for the first
block of data as soon as it is generated, before there is any clue how many
more blocks will follow.

Delayed allocation puts off the choice of disk block until the time of
actually writing to disk; the data stored in RAM is tagged only with the file
it should be written to and the position within that file. Now the operating
system does not need to guess how much data a program is going to write
at the time when it generates the first block. Instead, it can wait and see

354 CHAPTER 8. FILES AND OTHER PERSISTENT STORAGE

how much data gets written and allocate an extent that size.
Once the operating system knows the desired extent size, it needs to

search the data structure that records the available space. Bitmaps (whether
in individual block groups or otherwise) are not the only option for tracking
free space. The XFS file system, which was particularly designed for large
file systems, takes an alternative approach. It uses balanced search trees,
known as B-trees, to track the free extents of disk space. One B-tree stores
the free extents indexed by their location while another indexes them by their
size. That way, XFS can quickly locate free space near a specified location
on disk or can quickly locate a desired amount of space. Technically, the
trees used by XFS are a slight variant of B-trees, known as B+-trees. I’ll
describe this data structure in Section 8.5.1.

With free extents indexed by size in a B+-tree, the XFS allocator can
naturally use a best-fit policy, where it finds the smallest free extent bigger
than the desired size. (If the fit is not exact, the extra space can be broken
off and left as a smaller free extent.) With a bitmap, on the other hand, the
most natural allocation policy is first-fit, the policy of finding the first free
extent that is large enough. Each policy has its merits; you can compare
them in Exercise 8.9.

8.5 Metadata

You have seen that a file system is analogous to a virtual memory system.
Each has an allocation policy to select concrete storage locations for each
chunk of data. Continuing the analogy, I will now explain the metadata that
serves as the analog of page tables. Recall that in a system with separate
address spaces, each process has its own page table, storing the information
regarding which page frame holds that process’s page 0, page 1, and so forth.
Similarly, each file has its own metadata storing the information regarding
which disk block holds that file’s block 0, block 1, and so forth. You will
see that, as with page tables, there are several choices for the data structure
holding this mapping information. I discuss these alternative structures in
Section 8.5.1.

Metadata is data about data. Information regarding where on disk the
data is stored is one very important kind of metadata. However, I will
also more briefly enumerate other kinds. First, in Section 8.5.2, I will revisit
access control, a topic I considered from another perspective in Chapter 7. In
Section 8.5.2, the question is not how access control information is enforced
during access attempts, but how it is stored in the file system. Second, I

355 8.5. METADATA

will look in Section 8.5.3 at the other more minor, miscellaneous kinds of
metadata (beyond data location and access control), such as access dates
and times.

Some authors include file names as a kind of metadata. This makes sense
in those file systems where each file has exactly one name. However, most
modern file systems do not fit this description; a file might have no names,
or might have multiple names. Thus, you are better off thinking of a name
not as a property of a file, but as a route that can lead to a file. Similarly,
in other persistence services, data may be accessed through multiple routes,
such as database indexes. Therefore, I will not include naming in this section
on metadata, instead including it in Section 8.6 on directories and indexing.

8.5.1 Data Location Metadata

The simplest representation for data location metadata would be an array of
disk block numbers, with element i of the array specifying which disk block
holds block i of the file. This would be analogous to a linear page table.
Traditional UNIX file systems (including Linux’s ext2fs and ext3fs) use this
approach for small files. Each file’s array of disk block numbers is stored
in the file’s metadata structure known as its inode (short for index node).
For larger files, these file systems keep the inodes compact by using indirect
blocks, roughly analogous to multilevel page tables. I discuss the traditional
form of inodes and indirect blocks next. Thereafter, I discuss two alter
natives used in some more modern file systems: extent maps, which avoid
storing information about individual blocks, and B+-trees, which provide
efficient access to large extent maps.

Inodes and Indirect Blocks

When UNIX was first developed in the early 1970s, one of its many inno
vative features was the file system design, a design that has served as the
model for commonly used UNIX and Linux file systems to the present day,
including Linux’s ext3fs. The data-location metadata in these systems is
stored in a data structure that can better be called expedient than elegant.
However, the structure is efficient for small files, allows files to grow large,
and can be manipulated by simple code.

Each file is represented by a compact chunk of data called an inode. The
inode contains the file’s metadata if the file is small or an initial portion
of the metadata if the file is large. By allowing large files to have more
metadata elsewhere (in indirect blocks), the inodes are kept to a small fixed

356 CHAPTER 8. FILES AND OTHER PERSISTENT STORAGE

size. Each file system contains an array of inodes, stored in disk blocks
set aside for the purpose, with multiple inodes per block. Each inode is
identified by its position in the array. These inode numbers (or inumbers)
are the fundamental identifiers of the files in a file system; essentially, the
files are identified as file 0, file 1, and so forth, which indicate the files with
inodes in position 0, 1, and so forth. Later, in Section 8.6, you’ll see how
file names are mapped into inode numbers.

Each inode provides the metadata for one file. The metadata includes
the disk block numbers holding that file’s data, as well as the access per
missions and other metadata. These categories of metadata are shown in
Figure 8.6. In this simplified diagram, the inode directly contains the map
ping information specifying which disk block contains each block of the file,
much like a linear page table. Recall, however, that inodes are a small, fixed
size, whereas files can grow to be many blocks long. To resolve this con
flict, each inode directly contains the mapping information only for the first
dozen or so blocks. (The exact number varies between file systems, but is
consistent within any one file system.) Thus, a more realistic inode picture
is as shown in Figure 8.7.

Before I go into detail on how further disk blocks are indirectly accessed,
I should emphasize one aspect of the inode design. The low-numbered blocks
of a file are mapped in the exact same way (directly in the inode) regardless
of whether they are the only blocks in a small file or the first blocks of a
large file. This means that large files have a peculiar asymmetry, with some
blocks more efficiently accessible than others. The advantage is that when
a file grows and transitions from being a small file to being a large one, the
early blocks’ mapping information remains unchanged.

Because most files are small, the inodes are kept small, a fraction of a

file block 0’s disk block number
file block 1’s disk block number
file block 2’s disk block number

. . .
access permissions
other metadata

Figure 8.6: This initial approximation of an inode shows the principle cat
egories of metadata. However, this diagram is unrealistic in that the list of
disk block numbers seems to be unlimited, whereas actual inodes have only
a limited amount of space.

357 8.5. METADATA

file block 0’s disk block number
. . .

file block 11’s disk block number
indirect access to file block 12 through the end of the file

access permissions
other metadata

Figure 8.7: In this limited-size inode, blocks from number 12 to the end of
the file are indirectly referenced.

block in size. (If inodes were full blocks, the overhead for single-block files
would be 100 percent.) For those files large enough to overflow an inode,
however, one can be less stingy in allocating space for metadata. Therefore,
if the system needs more metadata space, it doesn’t allocate a second inode;
it allocates a whole additional disk block, an indirect block. This provides
room for many more block numbers, as shown in Figure 8.8. The exact
number of additional block numbers depends on how big blocks and block
numbers are. With 4-KB blocks and 4-byte block numbers, an indirect block
could hold 1 K block numbers (that is, 1024 block numbers), as shown in
the figure. This kind of indirect block is more specifically called a single
indirect block, because it adds only a single layer of indirection: the inode
points to it, and it points to data blocks.

In this example with 4-KB blocks, the single indirect block allows you to
accommodate files slightly more than 4 MB in size. To handle yet-larger files,
you can use a multilevel tree scheme, analogous to multilevel page tables.

Inode Indirect block
file block 0’s disk block number

. . .
file block 11’s disk block number
indirect block’s block number

access permissions
other metadata

file block 12’s disk block number
. . .

file block 1035’s disk block number

Figure 8.8: If an inode were used with a single indirect block, the block
numbers would be stored as shown here. Note that the indirect block is
actually considerably larger than the inode, contrary to its appearance in
the figure.

358 CHAPTER 8. FILES AND OTHER PERSISTENT STORAGE

The inode can contain a block number for a double indirect block, which
contains block numbers for many more single indirect blocks, each of which
contains many data block numbers. Figure 8.9 shows this enhancement to
the inode design, which retains the dozen direct blocks and the original
single indirect block, while adding a double indirect block.

Because the double indirect block points at many indirect blocks, each
of which points at many data blocks, files can now grow quite large. (In
Exercise 8.10, you can figure out just how large.) However, many UNIX file
systems go one step further by allowing the inode to point to a triple indirect
block as well, as shown in Figure 8.10. Comparing this with multilevel page
tables is illuminating; the very unbalanced tree used here allows a small,
shallow tree to grow into a large, deeper tree in a straightforward way. Later
you’ll see that B+-trees grow somewhat less straightforwardly, but without
becoming so imbalanced.

Having presented this method of mapping file blocks into disk blocks, I
will shortly turn to an alternative that avoids storing information on a per-
block basis. First, however, it is worth drawing one more analogy with page
tables. Just as a page table need not provide a page frame number for every
page (if some pages are not in memory), an inode or indirect block need not
provide a disk block number for every block of the file. Some entries can be
left blank, typically by using some reserved value that cannot be mistaken
for a legal disk block number. This is valuable for sparse files, also known
as files with holes. A sparse file has one or more large portions containing
nothing but zeros, usually because those portions have never been written.
By not allocating disk blocks for the all-zero file blocks, the file system can
avoid wasting space and time.

Extent Maps

You have seen that traditional inodes and indirect blocks are based around
the notion of a block map, that is, an array specifying a disk block number
for each file block. A block map is completely general, in that each file block
can be mapped to any disk block. File block n can be mapped somewhere
totally different on disk from file block n−1. Recall, however, that file system
designers prefer not to make use of this full generality. For performance
reasons, consecutive file blocks will normally be allocated consecutive disk
blocks, forming long extents. This provides the key to a more efficient data
structure for storing the mapping information.

Suppose you have a file that is 70 blocks long and that occupies disk
blocks 1000–1039 and 1200–1229. A block map would contain each one

359 8.5. METADATA

Inode Single indirect block

file block 0’s disk block number

. . .
file block 11’s disk block number
single indirect block’s number
double indirect block’s number

access permissions
other metadata

file block 12’s disk block number
. . .

file block 1035’s disk block number

Double indirect block Indirect block 1
indirect block 1’s block number

. . .
indirect block 1024’s block number

file block 1036’s disk block number
. . .

file block 2059’s disk block number

Indirect blocks 2–1024: similar to indirect block 1

Figure 8.9: If an inode were used with single and double indirect blocks, the
block numbers would be stored as shown here.

......

...... ...

......

Inode

A few data blocks Single indirect Double indirect Triple indirect

Many data blocks Many indirect
blocks

Tons of data blocks

Many double
indirect blocks

Tons of indirect blocks

Astronomically
many data blocks

...

...

Figure 8.10: The full structure of a file starts with an inode and contin
ues through a tree of single, double, and triple indirect blocks, eventually
reaching each of the data blocks.

360 CHAPTER 8. FILES AND OTHER PERSISTENT STORAGE

of those 70 disk block numbers. An extent map, on the other hand, would
contain only two entries, one for each of the file’s extents, just as the opening
sentence of this paragraph contains two ranges of block numbers. Each
entry in the extent map needs to contain enough information to describe
one extent. There are two alternatives for how this can be done:

•	 Each entry can contain the extent’s length and starting disk block
number. In the example, the two extent map entries would be (40, 1000)
and (30, 1200). These say the file contains 40 blocks starting at disk
block 1000 and 30 blocks starting at disk block 1200.

•	 Each entry can contain the extent’s length, starting file block num
ber, and starting disk block number. In the example, the two extent
map entries would be (40, 0, 1000) and (30, 40, 1200). The first entry
describes an extent of 40 blocks, starting at position 0 in the file and
occupying disk blocks starting with number 1000. The second entry
describes an extent of 30 blocks, starting at position 40 in the file and
occupying disk blocks starting with number 1200.

The first approach is more compact. The second approach, however, has the
advantage that each extent map entry can be understood in isolation, with
out needing to read the preceding extent map entries. This is particularly
useful if the extent map is stored in a B+-tree, as I will discuss subsequently.
For simplicity, I will assume the second approach in the remainder of my
discussion, though there are systems that use each.

At first, it may not be obvious why extent maps are a big improvement.
A typical block map system might use a 4-byte block number to refer to
each 4-KB block. This is less than one-tenth of one percent space overhead,
surely affordable with today’s cheap disk storage. What reason do file system
designers have to try to further reduce such an already small overhead? (I
will ignore the possibility that the extent map takes more space than the
block map, which would happen only if the file is scattered into lots of tiny
extents.)

The key fact is that disk space efficiency turns into time efficiency, which
is a much more precious commodity. Indirect blocks result in extra disk I/O
operations. Consider, for example, reading a file that is stored in a single
20-block extent. With the block map approach, the file system would need
to do at least two disk read operations: one to read the single indirect block
and one to read the data blocks. This assumes the inode is already cached
in memory, having been read in along with other inodes in its disk block,
and that the file system is smart enough to read all 20 data blocks in a single

361 8.5. METADATA

operation. With an extent map, the entire mapping information would fit in
the inode; if you again assume the inode is cached, a single read operation
suffices. Thus, the system can read files like this twice as fast. Admittedly,
this is a somewhat artificial best-case example. However, even with realistic
workloads, a significant speedup is possible.

Several modern file systems use extent maps, including Microsoft Win
dows’ NTFS, Mac OS X’s HFS Plus, and XFS, which was ported into Linux
from SGI’s IRIX version of UNIX. For files that have only a handful of ex
tents (by far the most common case), all three store the sequence of extent
map entries in the inode or (in Windows and Mac OS X) in the correspond
ing inode-like structure. The analogs of inodes in NTFS are large enough
(1 KB) that they can directly store entire extent maps for most files, even
those with more than a few extents. The other two file systems use smaller
inodes (or inode-like structures) and so provide an interesting comparison
of techniques for handling the situation where extra space is needed for a
large extent map.

HFS Plus takes an approach quite reminiscent of traditional UNIX in-
odes: the first eight extent map entries are stored directly in the inode-like
structure, whether they are the only ones or just the first few of a larger
number. Any additional entries are stored elsewhere, in a single B+-tree that
serves for all the files, as I will describe subsequently. XFS, on the other
hand, stores all the extent map entries for a file in a file-specific B+-tree;
the space in the inode is the root node of that tree. When the tree contains
only a few extents, the tree is small enough that the root of the tree is also
a leaf, and so the extents are directly in the inode, just as with HFS Plus.
When the extent map grows larger, however, all the entries move down into
descendant nodes in the tree, and none are left in the inode, unlike HFS
Plus’s special treatment of the first eight.

B-Trees

The B-tree data structure is a balanced search tree structure generally con
figured with large, high-degree nodes forming shallow, bushy trees. This
property makes it well suited to disk storage, where transferring a large block
of data at once is efficient (hence, large nodes), but performing a succession
of operations is slow (hence, a shallow tree). You may have encountered B-
trees before, in which case my summary will be a review, with the exception
of my description of specific applications for which this structure is used.

Any B-tree associates search keys with corresponding values, much like a
dictionary associates words with their definitions or a phone book associates

362 CHAPTER 8. FILES AND OTHER PERSISTENT STORAGE

names with phone numbers. The keys can be textual strings organized in
alphabetic order (as in these examples) or numbers organized by increasing
value; all that is required is that there is some way to determine the relative
order of two keys.

The B-tree allows entries to be efficiently located by key, as well as
inserted and deleted. Thus far, the same could be said for a hash table
structure, such as is used for hashed page tables. Where B-trees (and other
balanced search trees) distinguish themselves is that they also provide effi
cient operations based on the ordering of keys, rather than just equality of
keys. For example, if someone asks you to look up “Smit” in a phone book,
you could reply, “There is no Smit; the entries skip right from Smirnoff to
Smith.” You could do the same with a B-tree, but not with a hash table.

This ability to search for neighbors of a key, which need not itself be
present in the tree, is crucial when B-trees are used for extent maps. Some
one may want information about the extent containing file block 17. There
may be no extent map entry explicitly mentioning 17; instead, there is an
entry specifying a 10-block extent starting with file block 12. This entry can
be found as the one with the largest key that is less than or equal to 17.

B-trees can play several different roles in persistence systems. In Sec
tion 8.6, you’ll see their use for directories of file names and for indexes of
database contents; both are user-visible data access services. In the cur
rent section, B-trees play a more behind-the-scenes role, mapping positions
within a file to locations on disk. Earlier, in Section 8.4.3, you saw another
related use, the management of free space for allocation. The data structure
fundamentals are the same in all cases; I choose to introduce them here, be
cause extent maps seem like the simplest application. Free space mapping
is complicated by the dual indexing (by size and location), and directories
are complicated by the use of textual strings as keys.

You are probably already familiar with binary search trees, in which
each tree node contains a root key and two pointers to subtrees, one with
keys smaller than the root key, and one with keys larger than the root key.
(Some convention is adopted for which subtree contains keys equal to the
root key.) B-tree nodes are similar, but rather than using a single root key
to make a two-way distinction, they use N root keys to make an N + 1 way
distinction. That is, the root node contains N keys (in ascending order)
and N + 1 pointers to subtrees, as shown in Figure 8.11. The first subtree
contains keys smaller than the first root key, the next subtree contains keys
between the first and second root keys, and so forth. The last subtree
contains keys larger than the last root key.

If a multi-kilobyte disk block is used to hold a B-tree node, the value

363 8.5. METADATA

Key1 Key2 … KeyN

� Key1 � KeyN

� Key1
and

� Key2

� Key2
and

� Key3

…

Figure 8.11: A B-tree node contains N keys and N + 1 pointers to the
subtrees under it. Each subtree contains keys in a particular range.

of N can be quite large, resulting in a broad, shallow tree. In fact, even
if a disk block were only half full with root keys and subtree pointers, it
would still provide a substantial branching factor. This observation provides
the inspiration for the mechanism used to maintain B-trees as entries are
inserted.

Each node is allowed to be anywhere between half full and totally full.
This flexibility means one can easily insert into a node, so long as it is less
than full. The hard case can be handled by splitting nodes. As a special
exception, the root node is not required to be even half full. This exception
allows you to build a tree with any number of entries, and it adds at most
one level to the height of the tree.

Consider, for example, inserting one more entry into an already full node.
After insertion, you have N + 1 keys but only room for N . The node can be
replaced with two nodes, one containing the N/2 smallest keys and the other
the N/2 largest keys. Thus, you now have two half-full nodes. However, you
have only accounted for N of the N +1 keys; the median key is still left over.
You can insert this median key into the parent node, where it will serve as
the divider between the two half-full nodes, as shown in Figure 8.12.

When you insert the median key into the parent node, what if the parent
node is also full? You split the parent as well. The splitting process can
continue up the tree, but because the tree is shallow, this won’t take very
long. If the node being split has no parent, because it is the root of the
tree, it gains a new parent holding just the median key. In this way the tree
grows in height by one level.

In Bayer and McCreight’s 1972 paper introducing B-trees, they suggested
that each node contain key/value pairs, along with pointers to subtrees.
Practical applications today instead use a variant, sometimes called B+

364 CHAPTER 8. FILES AND OTHER PERSISTENT STORAGE

… 5 20 …

6 8 12 18

… 5 12 20 …

16 186 8Full node

Parent Parent

Two half-full nodes

Before inserting 16 After inserting 16

Figure 8.12: Inserting 16 into the illustrated B-tree, which has node-capacity
4, causes a node to split, with the median key moving into the parent.

trees. In a B+-tree, the nonleaf nodes contain just keys and pointers to
subtrees, without the keys having any associated values. The keys in these
nodes are used solely for navigation to a subtree. The leaves contain the
key/value pairs that are the actual contents of the data structure. For
example, a small B+-tree of extent map entries might be organized as shown
in Figure 8.13.

This sort of B+-tree can store the extent map for a single file, as is done
in XFS. For Mac OS X’s HFS Plus, a slightly different approach is needed,
because all files’ extent maps are combined into a single B+-tree. (Recall,
though, that the first eight extents of each file are not included in this tree.)

Each entry in this file system’s B+-tree describes an extent map entry
for some position within some file. That is, the entry contains a file number
(analogous to an inode number), a starting block number within the file, a
length in blocks, and a starting disk block number. The concatenation of
file number and starting file block number serves as the key. That way, all
the entries for a particular file appear consecutively in the tree, in order by
their position within the file.

The insertion algorithm for B+-trees is a slight variant of the one for
pure B-trees; you can work through the differences in Exercise 8.13.

8.5.2 Access Control Metadata

The complexity of the data structures storing access control information is
directly related to the sophistication of the protection system. Recall that
the POSIX specification, followed by UNIX and Linux, provides for only
fixed-length access control lists (ACLs), with permissions for a file’s owner,
owning group, and others. This information can be stored compactly in
the file’s inode. Microsoft Windows, on the other hand, allows much more
general ACLs. Thus, the designers of NTFS have faced a more interesting

365 8.5. METADATA

50 160

50
40

1200

90
40

1791

130
30
314

0
8

1000

160
40

271

200
100
50

Starting file block:
Length:

Starting disk block:

8
42
800

Figure 8.13: This small B+-tree extent map contains information that can
be used to find each extent’s range of file block numbers and range of disk
block numbers. Because the tree is a B+-tree rather than a B-tree, all the
extents are described in the leaves, with the nonleaf node containing just
navigational information.

challenge and, in fact, have revisited their design decision, as you will see.
For POSIX-compliant access control, an inode can contain three num

bers: one identifying the file’s owning user, one identifying the file’s owning
group, and one containing nine bits, representing the rwx permissions for
the owning user, the owning group, and other users. This third number,
containing the nine permission bits, is called the file’s mode. Rather than
waste all but nine bits in the mode, the others are used to encode additional
information, such as whether the file is a regular file, a directory, an I/O
device, and so forth. Figure 8.14 shows how the permissions can be de
termined by extracting an inode’s mode using the stat system call. (This
system call differs only slightly from fstat, which you saw earlier. The
file is specified by name, rather than by a numerical file descriptor.) If you
compile this C++ program and call the resulting executable stater, then
a command like ./stater somefile should produce information you could
also get with ls -l somefile.

Early versions of NTFS stored the full ACL for each file independently.
If the ACL was small enough to fit in the inode-like structure, it was stored
there. Otherwise, it was stored in one or more extents of disk blocks, just
like the file’s data, and the inode-like structure contained an extent map for
the ACL.

As of Windows 2000, Microsoft redesigned NTFS to take advantage of
the fact that many files have identical ACLs. The contents of the ACLs are
now stored in a centralized database. If two files have identical ACLs, they
can share the same underlying representation of that ACL.

366 CHAPTER 8. FILES AND OTHER PERSISTENT STORAGE

#include <unistd.h>
#include <time.h>
#include <sys/stat.h>
#include <stdio.h>
#include <iostream>
using namespace std;

static void print_bit(int test, char toPrint){
if(test)
cout << toPrint;

else
cout << ’-’;

}

int main(int argc, char *argv[]){
if(argc != 2){

cerr << "Usage: " << argv[0] << " filename" << endl;

return -1;

}

struct stat info;

if(stat(argv[1], &info) < 0){

perror(argv[1]);
return -1;

}

print_bit(info.st_mode & S_IRUSR, ’r’);

print_bit(info.st_mode & S_IWUSR, ’w’);

print_bit(info.st_mode & S_IXUSR, ’x’);

print_bit(info.st_mode & S_IRGRP, ’r’);

print_bit(info.st_mode & S_IWGRP, ’w’);

print_bit(info.st_mode & S_IXGRP, ’x’);

print_bit(info.st_mode & S_IROTH, ’r’);

print_bit(info.st_mode & S_IWOTH, ’w’);

print_bit(info.st_mode & S_IXOTH, ’x’);

cout << endl;

return 0;

}

Figure 8.14: This C++ program, stater.cpp, uses stat to retrieve ac
cess control metadata for whichever file is specified by the command-line
argument argv[1].

367 8.6. DIRECTORIES AND INDEXING

8.5.3 Other Metadata

Because files can be of any length, not just a multiple of the block size,
each inode (or equivalent) contains the file’s size in bytes. (The program in
Figure 8.3 on page 340 showed how you can retrieve this information.) Other
metadata is much more system-specific. For example, POSIX specifies that
each file has three time stamps, recording when the file was last accessed,
last written, and last modified in any way. Modification includes not only
writing the data, but also making changes in permission and other metadata
attributes. NTFS records whether the file should be hidden in ordinary
directory listings. HFS Plus has many metadata attributes supporting the
graphical user interface; for example, each file records its icon’s position.

One metadata attribute on POSIX systems connects with file linking,
that is, the use of multiple names for one file, which is the topic of Sec
tion 8.6.3. Each file’s inode contains a count of how many names refer to
the file. When that count reaches zero and the file is not in use by any
process, the operating system deletes the file. The operation users normally
think of as deleting a file actually just removes a name; the underlying file
may or may not be deleted as a consequence.

8.6 Directories and Indexing

Having seen how file systems provide the storage for files, you are now
ready to consider how those systems allow files to be located by name.
As a similar question regarding database systems, you can consider how
those systems provide indexed lookup. In Section 8.6.1, I set the stage for
this discussion by presenting a common framework for file directories and
database indexes, showing the ways in which they differ. In Section 8.6.2,
I show how the separation between file directories and database indexes
is currently weakening with the introduction of indexing mechanisms for
locating files. Having shown the basic principles of both directories and
indexes, I use Section 8.6.3 to dig into one particular aspect of file directories
in more detail: the ways in which multiple names can refer to a single file.
Finally, in Section 8.6.4, I take you behind the scenes to look at typical data
structures used for directories and indexes.

8.6.1 File Directories Versus Database Indexes

Traditionally, file systems include directories, which provide access to files
by name. Databases, on the other hand, include indexes, which provide

368 CHAPTER 8. FILES AND OTHER PERSISTENT STORAGE

access to entries in the database based on a portion of the contents. This
clean distinction between file systems and databases is currently blurring,
as alternative file-access techniques based on indexes become available. In
particular, Apple introduced such a feature in Mac OS X version 10.4 under
the name Spotlight. I describe Spotlight in Section 8.6.2. Microsoft subse
quently included a related feature in Windows Vista. This trend makes it
even more important to see what directories and indexes have in common
and what distinguishes them.

Both directories and indexes provide a mapping from keys to objects.
The keys in a directory are names, which are external to the object being
named. You can change the contents of a file without changing its name
or change the name without changing the contents. In contrast, the keys
in an index are attributes of the indexed objects, and so are intrinsic to
those objects. For example, an index on a database table of chapters might
allow direct access to the row with title "Files and Other Persistent
Storage" or with the number 8. If the row were updated to show a change
in this chapter’s title or number, the index would need to be updated ac
cordingly. Similarly, any update to the index must be in the context of a
corresponding change to the indexed row; it makes no sense to say that you
want to look up the row under chapter number 1, but there find that the
real chapter number is still 8.

Each name in a directory identifies a single file. Two files may have the
same name in different directories, but not in the same directory. Database
indexes, on the other hand, can be either for a unique attribute or a non-
unique one. For example, it may be useful to index a table of user accounts
by both the unique login name and the non-unique last name. The unique
index can be used to find the single record of information about the user
who logs in as "jdoe", whereas the non-unique index can be used to find all
the records of information about users with last name "Doe". An index can
also use a combination of multiple attributes as its key. For example, a uni
versity course catalog could have a unique index keyed on the combination
of department and course number.

The final distinction between file directories and database indexes is the
least fundamental; it is the kind of object to which they provide access.
Traditionally, directories provide access to entire files, which would be the
analog of tables in a relational database. Indexes, on the other hand, provide
access not to entire tables, but rather to individual rows within those tables.
However, this distinction is misleading for two reasons:

• Database systems typically have a meta-table that serves as a catalog

369 8.6. DIRECTORIES AND INDEXING

of all the tables. Each row in this meta-table describes one table.
Therefore, an index on this meta-table’s rows is really an index of the
tables. Access to its rows is used to provide access to the database’s
tables.

•	 As I mentioned earlier, operating system developers are incorporating
indexes in order to provide content-based access to files. This is the
topic of Section 8.6.2.

8.6.2 Using Indexes to Locate Files

As I have described, files are traditionally accessed by name, using directo
ries. However, there has been considerable interest recently in using indexes
to help users locate files by content or other attributes. Suppose that I
could not remember the name of the file containing this book. That would
not be a disaster, even leaving aside the possibility that the world might be
better off without the book. I could search for the file in numerous ways;
for example, it is one of the few files on my computer that has hundreds of
pages. Because the Mac OS X system that I am using indexes files by page
count (as well as by many other attributes), I can simply ask for all files
with greater than 400 pages. Once I am shown the five files meeting this
restriction, it is easy to recognize the one I am seeking.

The index-based search feature in Mac OS X, which is called Spotlight,
is not an integral component of the file system in the way directories and
filenames are. Instead, the indexing and search are provided by processes
external to the operating system, which can be considered a form of mid
dleware.

The file system supports the indexing through a generic ability to notify
processes of events such as the creation or deletion of a file, or a change in
a file’s contents. These events can be sent to any process that subscribes to
them and are used for other purposes as well, such as keeping the display of
file icons up to date. The Spotlight feature uses it to determine when files
need reindexing. When I save out a new version of my book, the file system
notifies Spotlight that the file changed, allowing Spotlight to update indexes
such as the one based on page count. Unlike file directories, which are stored
in a special data structure internal to the file system, the indexes for access
based on contents or attributes like page counts are stored in normal files in
the /.Spotlight-V100 directory.

Apple refers to the indexed attributes (other than the actual file con
tents) as metadata. In my book example, the number of pages in a docu

370 CHAPTER 8. FILES AND OTHER PERSISTENT STORAGE

ment would be one piece of metadata. This usage of the word “metadata” is
rather different from its more traditional use in file systems. Every file has
a fixed collection of file system metadata attributes, such as owner, permis
sions, and time of last modification. By contrast, the Spotlight metadata
attributes are far more numerous, and the list of attributes is open-ended
and specific to individual types of files. For example, while the file contain
ing my book has an attribute specifying the page count, the file containing
one of my vacation photos has an attribute specifying the exposure time in
seconds. Each attribute makes sense for the corresponding file, but would
not make sense for the other one.

As you have seen, the metadata attributes that need indexing are specific
to individual types of files. Moreover, even common attributes may need to
be determined in different ways for different types of files. For example,
reading a PDF file to determine its number of pages is quite different from
reading a Microsoft Word file to determine its number of pages—the files are
stored in totally different formats. Therefore, when the indexing portion of
Spotlight receives notification from the file system indicating that a file has
changed, and hence should be indexed, it delegates the actual indexing work
to a specialist indexing program that depends on the type of file. When you
install a new application program on your system, the installation package
can include a matching indexing program. That way you will always be
able to search for files on your system using relevant attributes, but without
Apple having had to foresee all the different file types.

8.6.3 File Linking

Indexed attributes, such as page counts, are generally not unique. My sys
tem may well have several five-page documents. By contrast, you have
already seen that each name within a directory names a single file. Just
because each pathname specifies a single file does not mean the converse is
true, however. In this subsection, I will explain two different ways in which
a file can be reachable through multiple names.

The most straightforward way in which multiple names can reach a single
file is if the directory entry for each of the names specifies the same file.
Figure 8.15 shows a directory with two names, both referring to the same
file. In interpreting this figure, you should understand that the box labeled
as the file does not denote just the data contained in the file, but also all
of the file’s metadata, such as its permissions. In the POSIX API, this
situation could have arisen in at least two different ways:

• The file was created with the name alpha, and then the procedure call

371 8.6. DIRECTORIES AND INDEXING

Name File

alpha

beta
the file

Figure 8.15: A directory can contain two names for one file.

link("alpha", "beta") added the name beta.

•	 The file was created with the name beta, and then the procedure call
link("beta", "alpha") added the name alpha.

No matter which name is the original and which is added, the two play iden
tical roles afterward, as shown in Figure 8.15. Neither can be distinguished
as the “real” name. Often people talk of the added name as a link to the
file. However, you need to understand that all file names are links to files.
There is nothing to distinguish one added with the link procedure.

POSIX allows a file to have names in multiple directories, so long as
all the directories are in the same file system. In the previous illustration
(Figure 8.15), alpha and beta in the current directory named one file. In
stead, I could have had directory entries in multiple directories all pointing
at the same file. For example, in Figure 8.16, I show a situation where
/alpha/beta is a name for the same file as /gamma/delta.

To keep the directory structure from getting too tangled, POSIX sys
tems ordinarily do not allow a directory to have more than one name. One
exception is that each directory contains two special entries: one called .
that is an extra link to that directory itself and one called .. that is an
extra link to its parent directory.

Just as link adds a name for a file, unlink removes a name. For example,
unlink("/alpha/beta") would eliminate one of the two routes to the file
in Figure 8.16 by removing the beta entry from the directory alpha. As
mentioned earlier, removing a name only implicitly has anything to do with
removing a file. The operating system removes the file when it no longer
has any names and is no longer in use by any process. (An open file can
continue to exist without any names, as you can demonstrate in Exploration
Project 8.10.)

POSIX also supports another alternative for how multiple names can
lead to one file. One name can refer to another name and thereby indi
rectly refer to the same file as the second name. In this situation, the first
name is called a symbolic link. Figure 8.17 shows an example, where alpha

372 CHAPTER 8. FILES AND OTHER PERSISTENT STORAGE

Name File

delta the file

Name File Name File

alpha beta

gamma

Root:

Figure 8.16: A file can have two different names, each in its own directory.
In this example, the two pathnames /alpha/beta and /gamma/delta both
lead to the same file.

is specified as a symbolic link to beta, and thereby refers to whatever file
beta does. (Symbolic links are also sometimes called soft links. Ordinary
links are called hard links when it is important to emphasize the difference.)
In this figure, I show that a directory can map each name to one of two
options: either a pointer to a file (which could be represented as an inode
number) or another name. The code that looks up filenames, in proce
dures such as open, treats these two options differently. When it looks up
alpha and finds beta, it recursively looks up beta, so as to find the actual
file. The symbolic link shown in Figure 8.17 could be created by executing
symlink("beta", "alpha").

Symbolic links are somewhat tricky, because they can form long chains,
dangling references, or loops. In the preceding example, you could form a
longer chain by adding gamma as a symbolic link to alpha, which is already
a symbolic link to beta. The code for looking up files needs to traverse such
chains to their end. However, there may not be a file at the end of the chain.
If you were to execute unlink("beta"), then you would have a dangling ref
erence: gamma would still be a symbolic link to alpha, which would still be a

Name File

alpha

beta

beta
the file

Figure 8.17: A symbolic link allows a file name to refer to a file indirectly,
by way of another file name.

373 8.6. DIRECTORIES AND INDEXING

symbolic link to beta, which wouldn’t exist any more. Worse, having deleted
beta, you could reuse that name as a symbolic link to alpha, creating a loop.
All POSIX procedures that look up files must return a special error code,
ELOOP, if they encounter such a situation. In addition to returning ELOOP
for true loops, these procedures are allowed to return the same error code
for any chain of symbolic links longer than some implementation-defined
maximum.

Symbolic links are more flexible than hard links. You can create a sym
bolic link that refers to a directory. You can also create a symbolic link that
refers to a file stored in a separate file system. For example, you could have
a symbolic link in your main file system, stored on your local disk drive,
that refers to a file stored in an auxiliary file system on a network file server.
Neither of these options is possible with a hard link.

You can create either a symbolic link or an ordinary hard link from within
a shell by using the ln command. This command runs a program that will
invoke either the link procedure or the symlink procedure. You can explore
this command and the results it produces in Exploration Projects 8.9 and
8.11.

Some file systems outside the UNIX tradition store the metadata for a
file directly in that file’s directory entry, rather than in a separate structure
such as an inode. This tightly binds the name used to reach the file together
with the identity of the file itself. In effect, the name becomes an attribute
of the file, rather than just a means of accessing the file. In systems of this
kind, symbolic links can still be used, but there is no easy analog for hard
links. This leads to an interesting situation when one of these systems needs
to be retrofitted for POSIX compliance.

For example, Apple’s HFS Plus was developed before Mac OS became
based on UNIX, which happened in Mac OS X. The underlying design as
sumes that each file has exactly one name and fuses together the directory
and metadata structures. Yet Mac OS X is a UNIX system and so needs to
support files with multiple names (created with link) or no names (if still
in use when unlinked). To accommodate this, Apple puts any file that is
in either of these situations into a special invisible directory with a random
number as its name. Any other names for the file are provided by a special
kind of symbolic link, which is made completely invisible to the POSIX API,
even to those procedures that normally inspect symbolic links rather than
simply following them to their targets.

374 CHAPTER 8. FILES AND OTHER PERSISTENT STORAGE

8.6.4 Directory and Index Data Structures

The simplest data structure for a directory or index is an unordered linear
list of key/value pairs. Whereas this is never used for a database index, it
is the most traditional approach for directories in UNIX-family file systems
and remains in use in many systems to this day. With this structure, the
only way to find a directory entry is through linear search. (For a database,
unordered linear search is available without any index at all by searching
the underlying rows of the database table.)

For small directories, a linear search can perform quite reasonably. There
fore, system administrators often design directory trees so that each direc
tory remains small. For example, my home directory is not /home/max, but
rather /home/m/a/max, where the m and a come from the first two letters of
my username. That way, the /home directory has only 26 entries, each of
which in turn has 26 entries, each of which has only one small fraction of the
thousands of users’ home directories. As you will see shortly, this kind of
directory tree is no longer necessary with a modern file system. On a mod
ern system, my files could be in /home/max, and similarly for the thousands
of other users, without a major slowdown—unless, of course, someone listed
the contents of /home.

A second alternative structure is a hash table. A hash table is a numer
ically indexed array of key/value pairs where software can directly access
entry number i without looking at the preceding entries. The trick is to
know (most of the time) which entry would contain a particular key; this
knowledge comes from using a hash function of the key as the entry number.
So long as no two keys collide and are assigned the same location, looking up
a particular entry (such as the one for max inside the /home directory) is a
constant-time operation, independent of the table size. All that is necessary
is to hash the key into a numerical hash code and use that code to directly
access the appropriate entry. If it contains the desired key (max), the lookup
is complete. If it contains no key at all, the lookup is also complete and can
report failure. If, due to a collision, the entry contains some other key than
the one being looked for, the system must start searching through alterna
tive locations. That searching, however, can be kept very rare, by ensuring
that the table is never very full.

Hash tables are occasionally used for database indexes; in particular,
they are an option in PostgreSQL. However, as I mentioned in Section 8.5.1,
they have the disadvantage relative to B+-trees of not supporting order-
based accesses. For example, there is no way to use a hash table index to find
all rows in an accounting table for payments made within a particular range

375 8.7. METADATA INTEGRITY

of dates. Hash indexes may also not perform as well as B+-tree indexes; the
PostgreSQL documentation cites this as a reason to discourage their use.

Hash tables are also occasionally used for indexing file system directories.
In particular, the FFS file system used in BSD versions of UNIX supports a
directory hashing extension. This feature builds a hash table in memory for
large directories at the time they are accessed. However, the on-disk data
structure remains an unsorted linear list.

B+-trees are the dominant structure for both database indexes and con
temporary file systems’ directories. I already discussed the structure of
B+-trees in Section 8.5.1 and showed how they provide highly efficient ac
cess. As examples, B+-trees are used for directories in Microsoft’s NTFS, in
SGI’s XFS, and (in a different form) in Apple’s HFS Plus.

In most systems, each index or directory is represented by its own B+
tree. HFS Plus instead puts all the directories’ entries together in one big
B+-tree. The keys in this tree are formed by concatenating together the
identifying number of the parent directory with the name of the particular
child file (or subdirectory). Thus, all the entries within a single directory
appear consecutively within the tree.

8.7 Metadata Integrity

When a system crashes, any data held in the volatile main memory (RAM)
is lost. In particular, any data that the file system was intending to write to
persistent storage, but was temporarily buffering in RAM for performance
reasons, is lost. This has rather different implications depending on whether
the lost data is part of what a user was writing into a file or is part of the
file system’s metadata:

•	 Some user data is noncritical, or can be recognized by a human as
damaged and therefore restored from a backup source. Other user data
is critical and can be explicitly flushed out to persistent storage under
control of the application program. For example, when a relational
database system is committing a transaction and needs to ensure that
all the log entries are in persistent storage, it can use the POSIX API’s
fsync procedure to force the operating system to write the log file to
persistent storage.

•	 If the last few metadata operations before a crash are cleanly lost in
their entirety, this can often be tolerated. However, users cannot tol
erate a situation where a crash in the middle of metadata updates

376 CHAPTER 8. FILES AND OTHER PERSISTENT STORAGE

results in damage to the integrity of the metadata structures them
selves. Without those structures to organize the storage blocks into
meaningful files, the storage contents are just one big pile of bits.
There wouldn’t even be any individual files to check for damage.

Therefore, all file systems contain some mechanism to protect the integrity
of metadata structures in the face of sudden, unplanned shutdowns. (More
extreme hardware failures are another question. If your machine room burns
down, you better have an off-site backup.)

Metadata integrity is threatened whenever a single logical transformation
of the metadata from one state to another is implemented by writing several
individual blocks to persistent storage. For example, extending a file by one
data block may require two metadata blocks be written to storage: one
containing the inode (or indirect block) pointing at the new data block and
another containing the bitmap of free blocks, showing that the allocated
block is no longer free. If the system crashes when only one of these two
updates has happened, the metadata will be inconsistent. Depending on
which update was written to persistent storage, you will either have a lost
block (no longer free, but not part of the file either) or, more dangerously,
a block that is in use, but also still “free” for another file to claim.

Although having a block “free” while also in use is dangerous, it is not
irreparable. If a file system somehow got into this state, a consistency repair
program could fix the free block bitmap by marking the block as not free.
By contrast, if the situation were to progress further, to the point of the
“free” block being allocated to a second file, there would be no clean repair.
Both files would appear to have equal rights to the block.

Based on the preceding example, I can distinguish three kinds of meta-
data integrity violation: irreparable corruption, noncritical reparable cor
ruption, and critical reparable corruption. Irreparable corruption, such as
two files using the same block, must be avoided at all costs. Noncritical
reparable corruption, such as a lost block, can be repaired whenever conve
nient. Critical reparable corruption, such as a block that is both in use and
“free,” must be repaired before the system returns to normal operation.

Each file system designer chooses a strategy for maintaining metadata
integrity. There are two basic strategies in use, each with two main variants:

•	 Each logical change to the metadata state can be accomplished by
writing a single block to persstent storage.

–	 The single block can be the commit record in a write-ahead log, as
I discussed in Section 5.4. Other metadata blocks may be written

377 8.7. METADATA INTEGRITY

as well, but they will be rolled back upon reboot if the commit
record is not written. Thus, only the writing of the commit block
creates a real state change. This approach is known as journaling.

–	 Alternatively, if the system always creates new metadata struc
tures rather than modifying existing ones, the single block to
write for a state change is the one pointing to the current meta-
data structure. This approach is known as shadow paging.

•	 Each logical change to the metadata state can be accomplished by
writing multiple blocks to persistent storage. However, the order of
the updates is carefully controlled so that after a crash, any incon
sistencies in the metadata will always be of the reparable kind. A
consistency repair program is run after each crash to restore the meta
data’s integrity by detecting and correcting violations of the metadata
structures’ invariant properties.

–	 The update order can be controlled by performing each metadata
update as a synchronous write. That is, the file system actually
writes the updated metadata block to persistent storage immedi
ately, rather than buffering the write in RAM for later.

–	 The update order can be controlled by buffering the updated
metadata blocks in RAM for later writing, but with specific an
notations regarding the dependencies among them. Before writ
ing a block to persistent storage, the system must write the other
blocks upon which it depends. If the same blocks are updated
repeatedly before they are written to storage, cyclic dependen
cies may develop, necessitating additional complications in the
mechanism. This approach is known as using soft updates.

The strategy of update ordering through synchronous writes was once
quite popular. Linux’s ext2fs uses this approach, for example. However,
performance considerations have removed this approach from favor, and it
is unlikely ever to return. The problem is not only that synchronous writes
slow normal operation. Far more fatally, as typical file systems’ sizes have
grown, the consistency repair process necessary after each crash has come
to take unacceptably long. Because synchronous writes are expensive, even
systems of this kind use them as sparingly as possible. The result is that
while all inconsistencies after a crash will be reparable, some may be of
the critical kind that need immediate repair. Thus, the time-consuming
consistency repair process must be completed before returning the crashed
system to service.

378 CHAPTER 8. FILES AND OTHER PERSISTENT STORAGE

Contemporary file systems have almost all switched to the journaling
strategy; examples include Linux’s ext3fs, Microsoft Windows’ NTFS, and
Mac OS X’s HFS Plus. After rebooting from a crash, the system must still do
a little work to undo and redo storage-block updates in accordance with the
write-ahead log. However, this is much faster, as it takes time proportional
to the amount of activity logged since the last checkpoint, rather than time
proportional to the file system size.

Shadow paging has been less widely adopted than journaling. Three
examples are the WAFL file system used in Network Appliance’s storage
servers, the ZFS file system developed by Sun Microsystems, and the btrfs
file system for Linux. Network Appliance’s choice of this design was mo
tivated primarily by the additional functionality shadow paging provides.
Because storage blocks are not overwritten, but rather superseded by new
versions elsewhere, WAFL naturally supports snapshots, which keep track
of prior versions of the file system’s contents. Although shadow paging has
not become as widespread as journaling, there is more hope for shadow pag
ing than for either form of ordered updates (synchronous writes and soft
updates). Increases in the demand for snapshots, the capacity of storage
devices, and the utilization of solid-state storage are causing shadow paging
to increasingly challenge journaling for dominance.

The soft updates strategy is generally confined to the BSD versions of
UNIX. Its main selling point is that it provides a painless upgrade path
from old-fashioned synchronous writes. (The in-storage structure of the file
system can remain identical.) However, it shares the biggest problem of
the synchronous write strategy, namely, the need for post-crash consistency
repair that takes time proportional to the file system size.

Admittedly, soft updates somewhat ameliorate the problem of consis
tency repair. Because soft updates can enforce update ordering restrictions
more cheaply than synchronous writes can, file systems using soft updates
can afford to more tightly control the inconsistencies possible after a crash.
Whereas synchronous write systems ensure only that the inconsistencies are
reparable, soft update systems ensure that the inconsistencies are of the
noncritical variety, safely reparable with the system up and running. Thus,
time-consuming consistency repair need not completely hold up system op
eration. Even still, soft updates are only a valiant attempt to make the best
of an intrinsically flawed strategy.

Because the only strategy of widespread use in contemporary designs is
journaling, which I discussed in Section 5.4, I will not go into further detail
here. However, it is important that you have a high-level understanding
of the different strategies and how they compare. If you were to go further

8.8. POLYMORPHISM IN FILE SYSTEM IMPLEMENTATIONS 379

and study the other strategies, you would undoubtedly be a better-educated
computer scientist. The notes section at the end of this chapter suggests
further reading on shadow paging and soft updates, as well as on a hybrid of
shadow paging and journaling that is known as a log-structured file system.

8.8 Polymorphism in File System Implementations

If you have studied modern programming languages, especially object-oriented
ones, you should have encountered the concept of polymorphism, that is, the
ability of multiple forms of objects to be treated in a uniform manner. A
typical example of polymorphism is found in graphical user interfaces where
each object displayed on the screen supports such operations as “draw your
self” and “respond to the mouse being clicked on you,” but different kinds
of objects may have different methods for responding to these common op
erations. A program can iterate down a list of graphical objects, uniformly
invoking the draw-yourself operation on each, without knowing what kind
each is or how it will respond.

In contemporary operating systems, the kernel’s interface to file sys
tems is also polymorphic, that is, a common, uniformly invokable interface
of operations that can hide a diversity of concrete implementations. This
polymorphic interface is often called a virtual file system (VFS). The VFS
defines a collection of abstract datatypes to represent such concepts as direc
tory entry, file metadata, or open file. Each datatype supports a collection of
operations. For example, from a directory entry, one can find the associated
file metadata object. Using that object, one can access or modify attributes,
such as ownership or protection. One can also use the file metadata object
to obtain an open file object, which one can then use to perform read or
write operations. All of these interface operations work seamlessly across
different concrete file systems. If a file object happens to belong to a file on
an ext3fs file system, then the write operation will write data in the ext3fs
way; if the file is on an NTFS file system, then the writing will happen the
NTFS way.

Operating systems are typically written in the C programming language,
which does not provide built-in support for object-oriented programming.
Therefore, the VFS’s polymorphism needs to be programmed more explic
itly. For example, in Linux’s VFS, each open file is represented as a pointer
to a structure (containing data about the file) that in turn contains a pointer
to a structure of file operations. This latter structure contains a pointer to
the procedure for each operation: one for how to read, one for how to write,

380 CHAPTER 8. FILES AND OTHER PERSISTENT STORAGE

and so forth. As Figure 8.18 shows, invoking the polymorphic vfs_write
operation on a file involves retrieving that file’s particular collection of file
operations (called f_op), retrieving the pointer to the particular write op
eration contained in that collection, and invoking it. This is actually quite
similar to how object-oriented programming languages work under the hood;
in C, the mechanism is made visible. (The vfs_write procedure writes a
given count of bytes from a buffer into a particular position in the file. This
underlies the POSIX pwrite and write procedures I described earlier.)

8.9 Security and Persistent Storage

When considering the security of a persistent storage system, it is critical
to have a clear model of the threats you want to defend against. Are you
concerned about attackers who will have access to the physical disk drive,
or those who can be kept on the other side of a locked door, at least until
the drive is taken out of service? Will your adversaries have sufficient moti
vation and resources to use expensive equipment? Are you concerned about
authorized users misusing their authorization, or are you concerned only
about outsiders? Are you concerned about attackers who have motivations
to modify or delete data, or only those whose motivation would be to breach
confidentiality?

As I explained in Section 7.6, if unencrypted data is written to a disk
drive and an attacker has physical access to the drive, then software-based
protection will do no good. This leads to two options for the security con
scious:

• Write only encrypted data to the disk drive, and keep the key else

ssize_t vfs_write(struct file *file, const char *buf,
size_t count, loff_t *pos){

ssize_t ret;

ret = file->f_op->write(file, buf, count, pos);
return ret;

}

Figure 8.18: Linux’s vfs write procedure, shown here stripped of many
details, uses pointers to look up and invoke specific code for handling the
write request.

381 8.9. SECURITY AND PERSISTENT STORAGE

where. This leads to the design of cryptographic file systems, which
automatically encrypt and decrypt all data.

•	 Keep the attacker from getting at the drive. Use physical security
such as locked doors, alarm systems, and guards to keep attackers
away. This needs to be coupled with careful screening of all personnel
authorized to have physical access, especially those involved in systems
maintenance.

Keeping security intact after the disk is removed from service raises
further issues. Selling used disks can be a very risky proposition, even if the
files on them have been deleted or overwritten.

File systems generally delete a file by merely updating the directory
entry and metadata to make the disk blocks that previously constituted
the file be free for other use. The data remains in the disk blocks until
the blocks are reused. Thus, deletion provides very little security against a
knowledgeable adversary. Even if no trace remains of the previous directory
entry or metadata, the adversary can simply search through all the disk
blocks in numerical order, looking for interesting data.

Even overwriting the data is far from a sure thing. Depending on how
the overwriting is done, the newly written data may wind up elsewhere on
disk than the original, and hence not really obscure it. Even low-level soft
ware may be unable to completely control this effect, because disk drives
may transparently substitute one block for another. However, carefully re
peated overwriting by low-level software that enlists the cooperation of the
disk drive controller can be effective against adversaries who do not possess
sophisticated technical resources or the motivation to acquire and use them.

For a sophisticated adversary who is able to use magnetic force scanning
tunneling microscopy, even repeatedly overwritten data may be recoverable.
Therefore, the best option for discarding a drive containing sensitive data
is also the most straightforward: physical destruction. A disk shredder in
operation is an awesome sight to behold. If you’ve never seen one, you owe
it to yourself to watch one of the videos available on the web.

Having talked about how hard it is to remove all remnants of data from
a drive, I now need to switch gears and talk about the reverse problem:
data that is too easily altered or erased. Although magnetic storage is hard
to get squeaky clean, if you compare it with traditional paper records, you
find that authorized users can make alterations that are not detectable by
ordinary means. If a company alters its accounting books after the fact, and
those books are real books on paper, there will be visible traces. On the

382 CHAPTER 8. FILES AND OTHER PERSISTENT STORAGE

other hand, if an authorized person within the company alters computerized
records, who is to know?

The specter of authorized users tampering with records opens up the
whole area of auditability and internal controls, which is addressed exten
sively in the accounting literature. Recent corporate scandals have focused
considerable attention on this area, including the passage in the United
States of the Sarbanes-Oxley Act, which mandates tighter controls. As a
result of implementing these new requirements, many companies are now
demanding file systems that record an entire version history of each file,
rather than only the latest version. This leads to some interesting techni
cal considerations; the end-of-chapter notes provide some references on this
topic. Among other possibilities, this legal change may cause file system
designers to reconsider the relative merits of shadow paging and journaling.

Authorized users cooking the books are not the only adversaries who
may wish to alter or delete data. One of the most visible form of attack
by outsiders is vandalism, in which files may be deleted wholesale or de
faced with new messages (that might appear, for example, on a public web
site). Vandalism raises an important general point about security: security
consists not only in reducing the risk of a successful attack, but also in miti
gating the damage that a successful attack would do. Any organization with
a significant dependence on computing should have a contingency plan for
how to clean up from an attack by vandals.

Luckily, contingency planning can be among the most cost-effective forms
of security measures, because there can be considerable sharing of resources
with planning for other contingencies. For example, a backup copy of data,
kept physically protected from writing, can serve to expedite recovery not
only from vandalism and other security breaches, but also from operational
and programming errors and even from natural disasters, if the backup is
kept at a separate location.

	Structure Bookmarks

