<u>4.4 Add and Subtract Fractions with Common Denominators</u> from *Prealgebra* by OpenStax is available under a <u>Creative Commons Attribution 4.0 International</u> license. © Jul 20, 2016, OpenStax. UMGC has modified this work and it is available under the original license.

4.4 Add and Subtract Fractions with Common Denominators

Model Fraction Addition

How many quarters are pictured? One quarter plus 2 quarters equals 3 quarters.

Remember, quarters are really fractions of a dollar. Quarters are another way to say fourths. So the picture of the coins shows that

$$\frac{1}{4}$$
 $\frac{2}{4}$ $\frac{3}{4}$ one quarter + two quarters = three quarters

Let's use fraction circles to model the same example, $\frac{1}{2} + \frac{2}{4}$

.

Start with one $\frac{1}{4}$ piece.

Add two more $\frac{1}{4}$ pieces.

The result is $\frac{3}{4}$.

So again, we see that

$$\frac{1}{4} + \frac{2}{4} \equiv \frac{3}{4}$$

NOTE

Doing the Manipulative Mathematics activity Model Fraction Addition will help you develop a better understanding of adding fractions

Example

Exercise

Use a model to find the sum $\frac{3}{8} + \frac{2}{8}$

NOTE

Exercise

Use a model to find each sum. Show a diagram to illustrate your model.

$$\frac{1}{8} + \frac{4}{8}$$

NOTE

Exercise

Use a model to find each sum. Show a diagram to illustrate your model.

$$\frac{1}{6} + \frac{4}{6}$$

5 6

Add Fractions with a Common Denominator

The example below shows that to add the same-size pieces—meaning that the fractions have the same **denominator**—we just add the number of pieces.

NOTE: FRACTION ADDITION

If a, b, and c are numbers where $c \neq 0$, then

$$\frac{a}{c} + \frac{b}{c} = \frac{a+b}{c}$$

To add fractions with a common denoming	nators, add th	e numerators a	nd place the	sum over the
common denominator.				

Example

Exercise

Find the sum: $\frac{3}{5} + \frac{1}{5}$.

Solution

	$\frac{3}{5} + \frac{1}{5}$
Add the numerators and place the sum over the common denominator.	$\frac{3+1}{5}$
Simplify.	<u>4</u> 5

NOTE

Exercise

Find each sum: $\frac{3}{6} + \frac{2}{6}$

 $\frac{5}{6}$

NOTE

Find each sum: $\frac{3}{10} + \frac{7}{10}$.

1

NOTE

Exercise

Find	the	sum:	x	_	2
			3	1	3

Solution

 $\frac{x}{3} + \frac{2}{3}$

Add the numerators and place the sum over the common denominator.

 $\frac{x+2}{3}$

Note that we cannot simplify this fraction any more. Since x and 2 are not like terms, we cannot combine them.

NOTE

Exercise

Find the sum: $\frac{x}{4} + \frac{3}{4}$.

 $\frac{x+3}{4}$

NOTE

Exercise

Find the sum: $\frac{y}{8} + \frac{5}{8}$.

 $\frac{y+5}{8}$

Example

Exercise

Find the sum: $-\frac{9}{d} + \frac{3}{d}$.

Sol	÷i	_	m

We will begin by rewriting the first fraction with the negative sign in the numerator.

$$-\frac{a}{b} = \frac{-a}{b}$$

	$-\frac{9}{d}+\frac{3}{d}$
Rewrite the first fraction with the negative in the numerator.	$\frac{-9}{d} + \frac{9}{d}$
Add the numerators and place the sum over the common denominator.	$\frac{-9+3}{d}$
Simplify the numerator.	$\frac{-6}{d}$
Rewrite with negative sign in front of the fraction.	$-\frac{6}{d}$

NOTE

Exercise

Find the sum: $-\frac{7}{d} + \frac{8}{d}$

 $\frac{1}{d}$

NOTE

Exercise

Find the sum: $-\frac{6}{m} + \frac{9}{m}$.

3 m

EXAMPLE

Exercise

Find the sum: $\frac{2n}{11} + \frac{5n}{11}$.

Download for free at http://cnx.org/contents/caa57dab-41c7-455e-bd6f-f443cda5519c@9.6

Solution	
	$\frac{2n}{11} + \frac{5n}{11}$
Add the numerators and place the sum over the common denominator.	$\frac{2n+5n}{11}$
Combine like terms.	$\frac{7n}{11}$

NOTE

Exercise

Find the sum: $\frac{3p}{8} + \frac{6p}{8}$.

 $\frac{9p}{8}$

NOTE

Exercise

Find the sum: $\frac{2q}{5} + \frac{7q}{5}$.

 $\frac{9q}{5}$

Example

Exercise

Find the sum: $-\frac{3}{12} + \left(-\frac{5}{12}\right)$

Solution	
	$-\tfrac{3}{12}+\left(-\tfrac{5}{12}\right)$
Add the numerators and place the sum over the common denominator.	$\frac{-3+(-5)}{12}$
Add.	$\frac{-8}{12}$
Simplify the fraction.	$-\frac{2}{3}$

Find each sum: $-\frac{4}{15} + \left(-\frac{6}{15}\right)$

 $-\frac{2}{3}$

NOTE

Exercise

Find each sum: $-\frac{5}{21} + \left(-\frac{9}{21}\right)$.

 $-\frac{2}{3}$

Model Fraction Subtraction

Subtracting two fractions with common denominators is much like adding fractions. Think of a pizza that was cut into 12 slices. Suppose five pieces are eaten for dinner. This means that, after dinner, there are seven pieces (or $\frac{7}{12}$ of the pizza) left in the box. If Leonardo eats 2 of these remaining pieces (or $\frac{2}{12}$ of the pizza), how much is left? There would be 5 pieces left (or $\frac{5}{12}$ of the pizza).

$$\frac{7}{12} - \frac{2}{12} = \frac{5}{12}$$

Download for free at http://cnx.org/contents/caa57dab-41c7-455e-bd6f-f443cda5519c@9.6

Let's use fraction circles to model the same example, $\frac{7}{12} - \frac{2}{12}$.

Start with seven $\frac{1}{12}$ pieces. Take away two $\frac{1}{12}$ pieces. How many twelfths are left?

Again, we have five twelfths, $\frac{5}{12}$.

Doing the Manipulative Mathematics activity Model Fraction Subtraction will help you develop a better understanding of subtracting fractions.

Use fraction circles to find the difference: $\frac{4}{5} - \frac{1}{5}$.

Example

Exercise

NOTE

Exercise

Download for free at http://cnx.org/contents/caa57dab-41c7-455e-bd6f-f443cda5519c@9.6

Use a model to find each difference. Show a diagram to illustrate your model.

 $\frac{7}{8} - \frac{4}{8}$

NOTE

Exercise

Use a model to find each difference. Show a diagram to illustrate your model.

$$\frac{5}{6} - \frac{4}{6}$$

Subtract Fractions with a Common Denominator

We subtract fractions with a common **denominator** in much the same way as we add fractions with a common denominator.

NOTE: FRACTION SUBTRACTION

If a, b, and c are numbers where $c \neq 0$, then

$$\frac{a}{c} - \frac{b}{c} = \frac{a - b}{c}$$

To subtract fractions with a common denominators, we subtract the numerators and place the difference over the common denominator.

Examp	le
-------	----

Exercise

Find the difference: $\frac{23}{24} - \frac{14}{24}$.

Solution	
	$\frac{23}{24} - \frac{14}{24}$
Subtract the numerators and place the difference over the common denominator.	$\frac{23-14}{24}$
Simplify the numerator.	9 24
	24

NOTE

Exercise

Find the difference: $\frac{19}{28} - \frac{7}{28}$.

 $\frac{3}{7}$

NOTE

Exercise

Find the difference: $\frac{27}{32} - \frac{11}{32}$.

 $\frac{1}{2}$

Example

Exercise

Find	the	difference:	y	_	1
			6		6

Solution

Subtract the numerators and place the difference over the common denominator.

 $\frac{5}{6} - \frac{5}{6}$

The fraction is simplified because we cannot combine the terms in the numerator.

 $\frac{y}{6} - \frac{1}{6}$

Subtract the numerators and place the difference over the common denominator.

 $\frac{y-1}{6}$

NOTE

Exercise

Find the difference $:\frac{x}{7} - \frac{2}{7}$.

 $\frac{x-2}{7}$

NOTE

Exercise

Find the difference: $\frac{y}{14} = \frac{13}{14}$.

$$\frac{y-13}{14}$$

Example

_							
E	v	Δ	P.	\sim	п	c	0

Find the difference: $-\frac{10}{x} - \frac{4}{x}$.

Solution

Remember, the fraction $-\frac{10}{x}$ can be written as $\frac{-10}{x}$.

	$-\frac{10}{x}-\frac{4}{x}$
Subtract the numerators.	$\frac{-10-4}{x}$
Simplify.	$\frac{-14}{x}$
	14

Rewrite with the negative sign in front of the fraction. $-\frac{1}{3}$

NOTE

Exercise

Find the difference: $-\frac{9}{x} - \frac{7}{x}$.

 $-\frac{16}{x}$

NOTE

Exercise

Find the difference: $-\frac{17}{a} - \frac{5}{a}$

$$-\frac{22}{a}$$

Now let's do an example that involves both addition and subtraction.

Example

Exercise

Simplify:
$$\frac{3}{8} + \left(-\frac{5}{8}\right) - \frac{1}{8}$$
.

Solution	
	$\frac{3}{8} + \left(-\frac{5}{8}\right) - \frac{1}{8}$
Combine the numerators over the common denominator.	$\frac{3+(-5)-1}{8}$
Simplify the numerator, working left to right.	$\frac{-2-1}{8}$
Subtract the terms in the numerator.	$\frac{-3}{8}$
Rewrite with the negative sign in front of the fraction.	$-\frac{3}{8}$

NOTE

Exercise

Simplify:
$$\frac{2}{5} + \left(-\frac{4}{5}\right) - \frac{3}{5}$$
.

-1

NOTE

Exercise

Simplify:
$$\frac{5}{9} + \left(-\frac{4}{9}\right) - \frac{7}{9}$$
.

$$-\frac{2}{3}$$

Key Concepts

- Fraction Addition
 - If a, b and c are numbers where $c \neq 0$, then $\frac{a}{c} + \frac{b}{c} = \frac{a+b}{c}$
 - To add fractions, add the numerators and place the sum over the common denominator.
- Fraction Subtraction
 - If a, b, and c are numbers where $c \neq 0$, then $\frac{a}{c} \frac{b}{c} = \frac{a-b}{c}$
 - To subtract fractions, subtract the numerators and place the difference over the common denominator.