4.4 Add and Subtract Fractions with Common Denominators

Model Fraction Addition

How many quarters are pictured? One quarter plus 2 quarters equals 3 quarters.

Remember, quarters are really fractions of a dollar. Quarters are another way to say fourths. So the picture of the coins shows that

$$
\begin{array}{ccc}
\frac{1}{4} & \frac{2}{4} & \frac{3}{4} \\
\text { one quarter } & + & \text { two quarters }
\end{array}=\begin{gathered}
\text { three quarters }
\end{gathered}
$$

Let's use fraction circles to model the same example, $\frac{1}{2}+\frac{2}{4}$

Start with one $\frac{1}{4}$ piece.

Add two more $\frac{1}{4}$ pieces.

The result is $\frac{3}{4}$.

So again, we see that

$$
\frac{1}{4}+\frac{2}{4} \equiv \frac{3}{4}
$$

NOTE

Doing the Manipulative Mathematics activity Model Fraction Addition will help you develop a better understanding of adding fractions

Example

Exercise

Use a model to find the sum $\frac{3}{8}+\frac{2}{8}$
4.4 Add and Subtract Fractions with Common Denominators from Prealgebra by OpenStax is available under a Creative Commons Attribution 4.0 International license. © Jul 20, 2016, OpenStax.

There are five $\frac{1}{8}$ pieces, or five-eighths. The model shows that $\frac{3}{8}+\frac{2}{8}=\frac{5}{8}$.

NOTE

Exercise

Use a model to find each sum. Show a diagram to illustrate your model.

$$
\frac{1}{8}+\frac{4}{8}
$$

NOTE

Exercise

Use a model to find each sum. Show a diagram to illustrate your model.
$\frac{1}{6}+\frac{4}{6}$

Add Fractions with a Common Denominator

The example below shows that to add the same-size pieces-meaning that the fractions have the same denominator-we just add the number of pieces.

NOTE: FRACTION ADDITION

If a, b, and c are numbers where $c \neq 0$, then

$$
\frac{a}{c}+\frac{b}{c}=\frac{a+b}{c}
$$

4.4 Add and Subtract Fractions with Common Denominators from Prealgebra by OpenStax is available under a Creative Commons Attribution 4.0 International license. © Jul 20, 2016, OpenStax.

To add fractions with a common denominators, add the numerators and place the sum over the common denominator.

Example

Exercise

Find the sum: $\frac{3}{5}+\frac{1}{5}$.

Solution	
	$\frac{3}{5}+\frac{1}{5}$
Add the numerators and place the sum over the common denominator.	$\frac{3+1}{5}$
Simplify.	$\frac{4}{5}$

NOTE

Exercise

Find each sum: $\frac{3}{6}+\frac{2}{6}$
$\frac{5}{6}$
$\overline{6}$

NOTE
Find each sum: $\frac{3}{10}+\frac{7}{10}$.

1

NOTE

Exercise

Download for free at http://cnx.org/contents/caa57dab-41c7-455e-bd6f-f443cda5519c@9.6
4.4 Add and Subtract Fractions with Common Denominators from Prealgebra by OpenStax is available under a Creative Commons Attribution 4.0 International license. © Jul 20, 2016, OpenStax.

Find the sum: $\frac{x}{3}+\frac{2}{3}$

Solution
Add the numerators and place the sum over the common denominator.
Note that we cannot simplify this fraction any more. Since x and 2 are not like terms, we cannot combine them.
$\frac{x}{3}+\frac{2}{3}$

NOTE

Exercise

Find the sum: $\frac{x}{4}+\frac{3}{4}$.

$$
\frac{x+3}{4}
$$

NOTE

Exercise

Find the sum: $\frac{y}{8}+\frac{5}{8}$.

$$
\frac{y+5}{8}
$$

Example

Exercise

Find the sum: $-\frac{9}{d}+\frac{3}{d}$.
Download for free at http://cnx.org/contents/caa57dab-41c7-455e-bd6f-f443cda5519c@9.6
4.4 Add and Subtract Fractions with Common Denominators from Prealgebra by OpenStax is available under a Creative Commons Attribution 4.0 International license. © Jul 20, 2016, OpenStax.

Solution
We will begin by rewriting the first fraction with the negative sign in the numerator.
$-\frac{a}{b}=\frac{-a}{b}$
Rewrite the first fraction with the negative in the numerator.
Add the numerators and place the sum over the common denominator.
Simplify the numerator.
Rewrite with negative sign in front of the fraction.
$\frac{-9}{d}+\frac{9}{d}+\frac{9}{d}$

NOTE

Exercise

Find the sum: $-\frac{7}{d}+\frac{8}{d}$
1
\bar{d}

NOTE

Exercise

Find the sum: $-\frac{6}{m}+\frac{9}{m}$.
$\frac{3}{m}$

EXAMPLE

Exercise

Find the sum: $\frac{2 n}{11}+\frac{5 n}{11}$.
Download for free at http://cnx.org/contents/caa57dab-41c7-455e-bd6f-f443cda5519c@9.6
4.4 Add and Subtract Fractions with Common Denominators from Prealgebra by OpenStax is available under a Creative Commons Attribution 4.0 International license. © Jul 20, 2016, OpenStax.

Solution
Add the numerators and place the sum over the common denominator.
Combine like terms.
$\frac{2 n}{11}+\frac{5 n}{11}$
$\frac{2 n+5 n}{11}$

NOTE

Exercise

Find the sum: $\frac{3 p}{8}+\frac{6 p}{8}$.
$\frac{9 p}{8}$

NOTE

Exercise

Find the sum: $\frac{2 q}{5}+\frac{7 q}{5}$.
$\frac{9 q}{5}$

Example

Exercise

Find the sum: $-\frac{3}{12}+\left(-\frac{5}{12}\right)$
4.4 Add and Subtract Fractions with Common Denominators from Prealgebra by OpenStax is available under a Creative Commons Attribution 4.0 International license. © Jul 20, 2016, OpenStax.

Solution

Add the numerators and place the sum over the common denominator.
Add.
Simplify the fraction.
$\frac{3}{12}+\left(-\frac{5}{12}\right)$

Find each sum: $-\frac{4}{15}+\left(-\frac{6}{15}\right)$
$-\frac{2}{3}$

NOTE

Exercise

Find each sum: $-\frac{5}{21}+\left(-\frac{9}{21}\right)$.
$-\frac{2}{3}$

Model Fraction Subtraction

Subtracting two fractions with common denominators is much like adding fractions. Think of a pizza that was cut into 12 slices. Suppose five pieces are eaten for dinner. This means that, after dinner, there are seven pieces (or $\frac{7}{12}$ of the pizza) left in the box. If Leonardo eats 2 of these remaining pieces (or $\frac{2}{12}$ of the pizza), how much is left? There would be 5 pieces left (or $\frac{5}{12}$ of the pizza).

$$
\frac{7}{12}-\frac{2}{12}=\frac{5}{12}
$$

Let's use fraction circles to model the same example, $\frac{7}{12}-\frac{2}{12}$.

Start with seven $\frac{1}{12}$ pieces. Take away two $\frac{1}{12}$ pieces. How many twelfths are left?

$\frac{7}{12}$

$\frac{2}{12}$
$=$

$\frac{5}{12}$

Again, we have five twelfths, $\frac{5}{12}$.
Doing the Manipulative Mathematics activity Model Fraction Subtraction will help you develop a better understanding of subtracting fractions.

Use fraction circles to find the difference: $\frac{4}{5}-\frac{1}{5}$.

Example

Exercise

Solution

Start with four $\frac{1}{5}$ pieces. Take away one $\frac{1}{5}$ piece. Count how many fifths are left. There are three $\frac{1}{5}$ pieces left.

NOTE

Exercise

Download for free at http://cnx.org/contents/caa57dab-41c7-455e-bd6f-f443cda5519c@9.6

Use a model to find each difference. Show a diagram to illustrate your model.
$\frac{7}{8}-\frac{4}{8}$

NOTE

Exercise

Use a model to find each difference. Show a diagram to illustrate your model.
$\frac{5}{6}-\frac{4}{6}$

Subtract Fractions with a Common Denominator

We subtract fractions with a common denominator in much the same way as we add fractions with a common denominator.

NOTE: FRACTION SUBTRACTION

If a, b, and c are numbers where $c \neq 0$, then

$$
\frac{a}{c}-\frac{b}{c}=\frac{a-b}{c}
$$

To subtract fractions with a common denominators, we subtract the numerators and place the difference over the common denominator.
4.4 Add and Subtract Fractions with Common Denominators from Prealgebra by OpenStax is available under a Creative Commons Attribution 4.0 International license. © Jul 20, 2016, OpenStax.

Example

Exercise

Find the difference: $\frac{23}{24}-\frac{14}{24}$.

Solution	
	$\frac{23}{24}-\frac{14}{24}$
Subtract the numerators and place the difference over the common denominator.	$\frac{23-14}{24}$
Simplify the numerator.	$\frac{9}{24}$
Simplify the fraction by removing common factors.	$\frac{3}{8}$

NOTE

Exercise

Find the difference: $\frac{19}{28}-\frac{7}{28}$.

3
$\overline{7}$

NOTE

Exercise

Find the difference: $\frac{27}{32}-\frac{11}{32}$.
1
$\overline{2}$

Example

Exercise

Download for free at http://cnx.org/contents/caa57dab-41c7-455e-bd6f-f443cda5519c@9.6
4.4 Add and Subtract Fractions with Common Denominators from Prealgebra by OpenStax is available under a Creative Commons Attribution 4.0 International license. © Jul 20, 2016, OpenStax.

Find the difference: $\frac{y}{6}-\frac{1}{6}$.

$$
\begin{aligned}
& \text { Solution } \\
& \begin{array}{l}
\text { Subtract the numerators and place the difference over the common } \\
\text { denominator. } \\
\text { The fraction is simplified because we cannot combine the terms in the numerator. }
\end{array}
\end{aligned}
$$

	$\frac{y}{6}-\frac{1}{6}$
Subtract the numerators and place the difference over the common denominator.	$\frac{y-1}{6}$

NOTE

Exercise

Find the difference $: \frac{x}{7}-\frac{2}{7}$.
$\frac{x-2}{7}$

NOTE

Exercise

Find the difference: $\frac{y}{14}-\frac{13}{14}$.
$\frac{y-13}{14}$

Example

Download for free at http://cnx.org/contents/caa57dab-41c7-455e-bd6f-f443cda5519c@9.6
4.4 Add and Subtract Fractions with Common Denominators from Prealgebra by OpenStax is available under a Creative Commons Attribution 4.0 International license. © Jul 20, 2016, OpenStax.

Exercise

Find the difference: $-\frac{10}{x}-\frac{4}{x}$.

```
Solution
Remember, the fraction - }\frac{10}{x}\mathrm{ can be written as }\frac{-10}{x}\mathrm{ .
```

	$-\frac{10}{x}-\frac{4}{x}$
Subtract the numerators.	$\frac{-10-4}{x}$
Simplify.	$\frac{-14}{x}$
Rewrite with the negative sign in front of the fraction.	$-\frac{14}{x}$

NOTE

Exercise

Find the difference: $-\frac{9}{x}-\frac{7}{x}$.
$-\frac{16}{x}$

NOTE

Exercise

Find the difference: $-\frac{17}{a}-\frac{5}{a}$
4.4 Add and Subtract Fractions with Common Denominators from Prealgebra by OpenStax is available under a Creative Commons Attribution 4.0 International license. © Jul 20, 2016, OpenStax.
$-\frac{22}{a}$

Now let's do an example that involves both addition and subtraction.

Example

Exercise

Simplify: $\frac{3}{8}+\left(-\frac{5}{8}\right)-\frac{1}{8}$.
Solution

Combine the numerators over the common denominator.	$\frac{3}{8}+\left(-\frac{5}{8}\right)-\frac{1}{8}$
Simplify the numerator, working left to right.	$\frac{3+(-5)-1}{8}$
Subtract the terms in the numerator.	$\frac{-2-1}{8}$
Rewrite with the negative sign in front of the fraction.	$-\frac{3}{8}$

NOTE

Exercise

Simplify: $\frac{2}{5}+\left(-\frac{4}{5}\right)-\frac{3}{5}$.
-1

NOTE

Exercise

Simplify: $\frac{5}{9}+\left(-\frac{4}{9}\right)-\frac{7}{9}$.
$-\frac{2}{3}$

Key Concepts

- Fraction Addition
- If a, b and c are numbers where $c \neq 0$, then $\frac{a}{c}+\frac{b}{c}=\frac{a+b}{c}$
o To add fractions, add the numerators and place the sum over the common denominator.
- Fraction Subtraction
o If a, b, and c are numbers where $c \neq 0$, then $\frac{a}{c} \cdot-\frac{b}{c}=\frac{a-b}{c}$
o To subtract fractions, subtract the numerators and place the difference over the common denominator.

