
Reading 3. Testing from 6.005 Software Construction is available under a Creative Commons Attribution-ShareAlike
4.0 International license. UMGC has modified this work and it is available under the original license.

Reading 3: Testing

Validation

Testing is an example of a more general process called validation. The purpose of validation is to
uncover problems in a program and thereby increase your confidence in the program’s correctness.
Validation includes:

• Formal reasoning about a program, usually called verification. Verification constructs a formal
proof that a program is correct. Verification is tedious to do by hand, and automated tool
support for verification is still an active area of research. Nevertheless, small, crucial pieces of a
program may be formally verified, such as the scheduler in an operating system, or the bytecode
interpreter in a virtual machine, or the filesystem in an operating system.

• Code review. Having somebody else carefully read your code, and reason informally about it,
can be a good way to uncover bugs. It’s much like having somebody else proofread an essay you
have written. We’ll talk more about code review in the next reading.

• Testing. Running the program on carefully selected inputs and checking the results.

Even with the best validation, it’s very hard to achieve perfect quality in software. Here are some typical
residual defect rates (bugs left over after the software has shipped) per kloc (one thousand lines of
source code):

• 1 - 10 defects/kloc: Typical industry software.

• 0.1 - 1 defects/kloc: High-quality validation. The Java libraries might achieve this level of
correctness.

• 0.01 - 0.1 defects/kloc: The very best, safety-critical validation. NASA and companies like Praxis
can achieve this level.

This can be discouraging for large systems. For example, if you have shipped a million lines of typical
industry source code (1 defect/kloc), it means you missed 1000 bugs!

Why Software Testing is Hard

Here are some approaches that unfortunately don’t work well in the world of software.

Exhaustive testing is infeasible. The space of possible test cases is generally too big to cover
exhaustively. Imagine exhaustively testing a 32-bit floating-point multiply operation, a*b. There are
2^64 test cases!

1

http://web.mit.edu/6.005/www/fa15/classes/03-testing/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

Haphazard testing (“just try it and see if it works”) is less likely to find bugs, unless the program is so
buggy that an arbitrarily-chosen input is more likely to fail than to succeed. It also doesn’t increase our
confidence in program correctness.

Random or statistical testing doesn’t work well for software. Other engineering disciplines can test
small random samples (e.g. 1% of hard drives manufactured) and infer the defect rate for the whole
production lot. Physical systems can use many tricks to speed up time, like opening a refrigerator 1000
times in 24 hours instead of 10 years. These tricks give known failure rates (e.g. mean lifetime of a hard
drive), but they assume continuity or uniformity across the space of defects. This is true for physical
artifacts.

But it’s not true for software. Software behavior varies discontinuously and discretely across the space
of possible inputs. The system may seem to work fine across a broad range of inputs, and then abruptly
fail at a single boundary point. The famous Pentium division bug affected approximately 1 in 9 billion
divisions. Stack overflows, out of memory errors, and numeric overflow bugs tend to happen abruptly,
and always in the same way, not with probabilistic variation. That’s different from physical systems,
where there is often visible evidence that the system is approaching a failure point (cracks in a bridge) or
failures are distributed probabilistically near the failure point (so that statistical testing will observe
some failures even before the point is reached).

Instead, test cases must be chosen carefully and systematically, and that’s what we’ll look at next.

Putting on Your Testing Hat

Testing requires having the right attitude. When you’re coding, your goal is to make the program work,
but as a tester, you want to make it fail.

That’s a subtle but important difference. It is all too tempting to treat code you’ve just written as a
precious thing, a fragile eggshell, and test it very lightly just to see it work.

Instead, you have to be brutal. A good tester wields a sledgehammer and beats the program everywhere
it might be vulnerable, so that those vulnerabilities can be eliminated.

Test-first Programming

Test early and often. Don’t leave testing until the end, when you have a big pile of unvalidated code.
Leaving testing until the end only makes debugging longer and more painful, because bugs may be
anywhere in your code. It’s far more pleasant to test your code as you develop it.

In test-first-programming, you write tests before you even write any code. The development of a single
function proceeds in this order:

2

1. Write a specification for the function.

2. Write tests that exercise the specification.

3. Write the actual code. Once your code passes the tests you wrote, you’re done.

The specification describes the input and output behavior of the function. It gives the types of the
parameters and any additional constraints on them (e.g. sqrt’s parameter must be nonnegative). It also
gives the type of the return value and how the return value relates to the inputs. You’ve already seen
and used specifications on your problem sets in this class. In code, the specification consists of the
method signature and the comment above it that describes what it does. We’ll have much more to say
about specifications a few classes from now.

Writing tests first is a good way to understand the specification. The specification can be buggy, too —
incorrect, incomplete, ambiguous, missing corner cases. Trying to write tests can uncover these
problems early, before you’ve wasted time writing an implementation of a buggy spec.

Choosing Test Cases by Partitioning

Creating a good test suite is a challenging and interesting design problem. We want to pick a set of test
cases that is small enough to run quickly, yet large enough to validate the program.

To do this, we divide the input space into subdomains, each consisting of a set of inputs. Taken together
the subdomains completely cover the input space, so that every input lies in at least one subdomain.
Then we choose one test case from each subdomain, and that’s our test suite.

The idea behind subdomains is to partition the input space into sets of similar inputs on which the
program has similar behavior. Then we use one representative of each set. This approach makes the
best use of limited testing resources by choosing dissimilar test cases, and forcing the testing to explore
parts of the input space that random testing might not reach.

3

Example: BigInteger.multiply()

Let’s look at an example. BigInteger is a class built into the Java library that can represent integers of any
size, unlike the primitive types int and long that have only limited ranges. BigInteger has a method
multiply that multiplies two BigInteger values together:

/**

 * @param val another BigIntger

 * @return a BigInteger whose value is (this * val).

 */

public BigInteger multiply(BigInteger val)

For example, here’s how it might be used:

BigInteger a = ...;

BigInteger b = ...;

BigInteger ab = a.multiply(b);

This example shows that even though only one parameter is explicitly shown in the method’s declaration,
multiply is actually a function of two arguments: the object you’re calling the method on (a in the
example above), and the parameter that you’re passing in the parentheses (b in this example). In
Python, the object receiving the method call would be explicitly named as a parameter called self in the
method declaration. In Java, you don’t mention the receiving object in the parameters, and it’s called
this instead of self.

So we should think of multiply as a function taking two inputs, each of type BigInteger, and producing
one output of type BigInteger:

multiply : BigInteger × BigInteger → BigInteger

So we have a two-dimensional input space, consisting of all the pairs of integers (a,b). Now let’s partition
it. Thinking about how multiplication works, we might start with these partitions:

• a and b are both positive

• a and b are both negative

• a is positive, b is negative

4

• a is negative, b is positive

There are also some special cases for multiplication that we should check: 0, 1, and -1.

• a or b is 0, 1, or -1

Finally, as a suspicious tester trying to find bugs, we might suspect that the implementor of BigInteger
might try to make it faster by using int or long internally when possible, and only fall back to an
expensive general representation (like a list of digits) when the value is too big. So we should definitely
also try integers that are very big, bigger than the biggest long.

• a or b is small

• the absolute value of a or b is bigger than Long.MAX_VALUE, the biggest possible primitive
integer in Java, which is roughly 2^63.

Let’s bring all these observations together into a straightforward partition of the whole (a,b) space. We’ll
choose a and bindependently from:

• 0

• 1

• -1

• small positive integer

• small negative integer

• huge positive integer

• huge negative integer

So this will produce 7 × 7 = 49 partitions that completely cover the space of pairs of integers.

To produce the test suite, we would pick an arbitrary pair (a,b) from each square of the grid, for
example:

• (a,b) = (-3, 25) to cover (small negative, small positive)

• (a,b) = (0, 30) to cover (0, small positive)

• (a,b) = (2^100, 1) to cover (large positive, 1)

• etc.

5

The figure below shows how the two-dimensional (a,b) space is divided by this partition, and the points
are test cases that we might choose to completely cover the partition.

Example: max()

Let’s look at another example from the Java library: the integer max() function, found in the Math class.

/**

 * @param a an argument

 * @param b another argument

 * @return the larger of a and b.

 */

public static int max(int a, int b)

Mathematically, this method is a function of the following type:

max : int × int → int

From the specification, it makes sense to partition this function as:

6

• a < b

• a = b

• a > b

Our test suite might then be:

• (a, b) = (1, 2) to cover a < b

• (a, b) = (9, 9) to cover a = b

• (a, b) = (-5, -6) to cover a > b

Include Boundaries in the Partition

Bugs often occur at boundaries between subdomains. Some examples:

• 0 is a boundary between positive numbers and negative numbers

• the maximum and minimum values of numeric types, like int and double

• emptiness (the empty string, empty list, empty array) for collection types

• the first and last element of a collection

Why do bugs often happen at boundaries? One reason is that programmers often make off-by-one
mistakes (like writing <=instead of <, or initializing a counter to 0 instead of 1). Another is that some
boundaries may need to be handled as special cases in the code. Another is that boundaries may be
places of discontinuity in the code’s behavior. When an int variable grows beyond its maximum positive
value, for example, it abruptly becomes a negative number.

It’s important to include boundaries as subdomains in your partition, so that you’re choosing an input
from the boundary.

7

Let’s redo max : int × int → int.

Partition into:

• relationship between a and b

o a < b

o a = b

o a > b

• value of a

o a = 0

o a < 0

o a > 0

o a = minimum integer

o a = maximum integer

• value of b

o b = 0

o b < 0

o b > 0

o b = minimum integer

o b = maximum integer

Now let’s pick test values that cover all these classes:

• (1, 2) covers a < b, a > 0, b > 0

• (-1, -3) covers a > b, a < 0, b < 0

• (0, 0) covers a = b, a = 0, b = 0

• (Integer.MIN_VALUE, Integer.MAX_VALUE) covers a < b, a = minint, b = maxint

• (Integer.MAX_VALUE, Integer.MIN_VALUE) covers a > b, a = maxint, b = minint

8

Two Extremes for Covering the Partition

After partitioning the input space, we can choose how exhaustive we want the test suite to be:

• Full Cartesian product.
Every legal combination of the partition dimensions is covered by one test case. This is what we
did for the multiply example, and it gave us 7 × 7 = 49 test cases. For the max example that
included boundaries, which has three dimensions with 3 parts, 5 parts, and 5 parts respectively,
it would mean up to 3 × 5 × 5 = 75 test cases. In practice not all of these combinations are
possible, however. For example, there’s no way to cover the combination a < b, a=0, b=0,
because a can’t be simultaneously less than zero and equal to zero.

• Cover each part.
Every part of each dimension is covered by at least one test case, but not necessarily every
combination. With this approach, the test suite for max might be as small as 5 test cases if
carefully chosen. That’s the approach we took above, which allowed us to choose 5 test cases.

Often we strike some compromise between these two extremes, based on human judgement and
caution, and influenced by whitebox testing and code coverage tools, which we look at next.

Blackbox and Whitebox Testing

Recall from above that the specification is the description of the function’s behavior — the types of
parameters, type of return value, and constraints and relationships between them.

Blackbox testing means choosing test cases only from the specification, not the implementation of the
function. That’s what we’ve been doing in our examples so far. We partitioned and looked for
boundaries in multiply and max without looking at the actual code for these functions.

Whitebox testing (also called glass box testing) means choosing test cases with knowledge of how the
function is actually implemented. For example, if the implementation selects different algorithms
depending on the input, then you should partition according to those domains. If the implementation
keeps an internal cache that remembers the answers to previous inputs, then you should test repeated
inputs.

When doing whitebox testing, you must take care that your test cases don’t require specific
implementation behavior that isn’t specifically called for by the spec. For example, if the spec says
“throws an exception if the input is poorly formatted,” then your test shouldn’t check specifically for a
NullPointerException just because that’s what the current implementation does. The specification in this
case allows any exception to be thrown, so your test case should likewise be general to preserve the
implementor’s freedom. We’ll have much more to say about this in the class on specs.

9

Coverage

One way to judge a test suite is to ask how thoroughly it exercises the program. This notion is called
coverage. Here are three common kinds of coverage:

• Statement coverage: is every statement run by some test case?

• Branch coverage: for every if or while statement in the program, are both the true and the false
direction taken by some test case?

• Path coverage: is every possible combination of branches — every path through the program —
taken by some test case?

Branch coverage is stronger (requires more tests to achieve) than statement coverage, and path
coverage is stronger than branch coverage. In industry, 100% statement coverage is a common goal, but
even that is rarely achieved due to unreachable defensive code (like “should never get here” assertions).
100% branch coverage is highly desirable, and safety critical industry code has even more arduous
criteria (e.g., “MCDC,” modified decision/condition coverage). Unfortunately 100% path coverage is
infeasible, requiring exponential-size test suites to achieve.

A standard approach to testing is to add tests until the test suite achieves adequate statement coverage:
i.e., so that every reachable statement in the program is executed by at least one test case. In practice,
statement coverage is usually measured by a code coverage tool, which counts the number of times
each statement is run by your test suite. With such a tool, white box testing is easy; you just measure
the coverage of your black box tests, and add more test cases until all important statements are logged
as executed.

A good code coverage tool for Eclipse is EclEmma, shown below.

10

Notice how lines that have been executed by the test suite are colored green, and lines not yet covered
are red. If you saw this result from your coverage tool, your next step would be to come up with a test
case that causes the body of the while loop to execute, and add it to your test suite so that the red lines
become green.

Unit Testing and Stubs

A well-tested program will have tests for every individual module (where a module is a method or a
class) that it contains. A test that tests an individual module, in isolation if possible, is called a unit test.
Testing modules in isolation leads to much easier debugging. When a unit test for a module fails, you
can be more confident that the bug is found in that module, rather than anywhere in the program.

The opposite of a unit test is an integration test, which tests a combination of modules, or even the
entire program. If all you have are integration tests, then when a test fails, you have to hunt for the bug.
It might be anywhere in the program. Integration tests are still important, because a program can fail at
the connections between modules. For example, one module may be expecting different inputs than it’s
actually getting from another module. But if you have a thorough set of unit tests that give you
confidence in the correctness of individual modules, then you’ll have much less searching to do to find
the bug.

Suppose you’re building a web search engine. Two of your modules might be getWebPage(), which
downloads web pages, and extractWords(), which splits a page into its component words:

11

/** @return the contents of the web page downloaded from url

 */

public static String getWebPage(URL url) {...}

/** @return the words in string s, in the order they appear, where a word is a contiguous
sequence of non-whitespace and non-punctuation characters

 */

public static List<String> extractWords(String s) { ... }

These methods might be used by another module makeIndex() as part of the web crawler that makes
the search engine’s index:

/** @return an index mapping a word to the set of URLs containing that word, for all webpages
in the input set

 */

public static Map<String, Set<URL>> makeIndex(Set<URL> urls) {

...

for (URL url : urls) {

String page = getWebPage(url);

List<String> words = extractWords(page);

...

}

…

}

In our test suite, we would want:

• unit tests just for getWebPage() that test it on various URLs

• unit tests just for extractWords() that test it on various strings

12

• unit tests for makeIndex() that test it on various sets of URLs

One mistake that programmers sometimes make is writing test cases for extractWords() in such a way
that the test cases depend on getWebPage() to be correct. It’s better to think about and test
extractWords() in isolation, and partition it. Using test partitions that involve web page content might be
reasonable, because that’s how extractWords() is actually used in the program. But don’t actually call
getWebPage() from the test case, because getWebPage() may be buggy! Instead, store web page
content as a literal string, and pass it directly to extractWords(). That way you’re writing an isolated unit
test, and if it fails, you can be more confident that the bug is in the module it’s actually testing,
extractWords().

Note that the unit tests for makeIndex() can’t easily be isolated in this way. When a test case calls
makeIndex(), it is testing the correctness of not only the code inside makeIndex(), but also all the
methods called by makeIndex(). If the test fails, the bug might be in any of those methods. That’s why
we want separate tests for getWebPage() and extractWords(), to increase our confidence in those
modules individually and localize the problem to the makeIndex() code that connects them together.

Isolating a higher-level module like makeIndex() is possible if we write stub versions of the modules that
it calls. For example, a stub for getWebPage() wouldn’t access the internet at all, but instead would
return mock web page content no matter what URL was passed to it. A stub for a class is often called a
mock object. Stubs are an important technique when building large systems, but we will generally not
use them in 6.005.

Automated Testing and Regression Testing

Nothing makes tests easier to run, and more likely to be run, than complete automation. Automated
testing means running the tests and checking their results automatically. A test driver should not be an
interactive program that prompts you for inputs and prints out results for you to manually check.
Instead, a test driver should invoke the module itself on fixed test cases and automatically check that
the results are correct. The result of the test driver should be either “all tests OK” or “these tests failed:
…” A good testing framework, like JUnit, helps you build automated test suites.

Note that automated testing frameworks like JUnit make it easy to run the tests, but you still have to
come up with good test cases yourself. Automatic test generation is a hard problem, still a subject of
active computer science research.

Once you have test automation, it’s very important to rerun your tests when you modify your code. This
prevents your program from regressing — introducing other bugs when you fix new bugs or add new
features. Running all your tests after every change is called regression testing.

Whenever you find and fix a bug, take the input that elicited the bug and add it to your automated test
suite as a test case. This kind of test case is called a regression test. This helps to populate your test suite

13

with good test cases. Remember that a test is good if it elicits a bug — and every regression test did in
one version of your code! Saving regression tests also protects against reversions that reintroduce the
bug. The bug may be an easy error to make, since it happened once already.

This idea also leads to test-first debugging. When a bug arises, immediately write a test case for it that
elicits it, and immediately add it to your test suite. Once you find and fix the bug, all your test cases will
be passing, and you’ll be done with debugging and have a regression test for that bug.

In practice, these two ideas, automated testing and regression testing, are almost always used in
combination.

Regression testing is only practical if the tests can be run often, automatically. Conversely, if you already
have automated testing in place for your project, then you might as well use it to prevent regressions.
So automated regression testing is a best-practice of modern software engineering.

Summary

In this reading, we saw these ideas:

• Test-first programming. Write tests before you write code.

• Partitioning and boundaries for choosing test cases systematically.

• White box testing and statement coverage for filling out a test suite.

• Unit-testing each module, in isolation as much as possible.

• Automated regression testing to keep bugs from coming back.

The topics of today’s reading connect to our three key properties of good software as follows:

• Safe from bugs. Testing is about finding bugs in your code, and test-first programming is about
finding them as early as possible, immediately after you introduced them.

• Easy to understand. Testing doesn’t help with this as much as code review does.

• Ready for change. Readiness for change was considered by writing tests that only depend on
behavior in the spec. We also talked about automated regression testing, which helps keep bugs
from coming back when changes are made to code.

14

	Reading 3: Testing
	Validation
	Why Software Testing is Hard
	Putting on Your Testing Hat
	Test-first Programming
	Choosing Test Cases by Partitioning
	Example: BigInteger.multiply()
	Example: max()

	Include Boundaries in the Partition
	Two Extremes for Covering the Partition
	Blackbox and Whitebox Testing
	Coverage
	Unit Testing and Stubs
	Automated Testing and Regression Testing
	Summary

