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Advanced Encryption Standard

The Advanced Encryption Standard (AES), also
known as Rijndael[4][5] (its original name), is a specifi-
cation for the encryption of electronic data established by
the U.S. National Institute of Standards and Technology
(NIST) in 2001.[6]

AES is a subset of the Rijndael cipher[5] developed by
two Belgian cryptographers, Joan Daemen and Vincent
Rijmen, who submitted a proposal to NIST during the
AES selection process.[7] Rijndael is a family of ciphers
with different key and block sizes.
For AES, NIST selected three members of the Rijndael
family, each with a block size of 128 bits, but three dif-
ferent key lengths: 128, 192 and 256 bits.
AES has been adopted by the U.S. government and is now
used worldwide. It supersedes the Data Encryption Stan-
dard (DES),[8] which was published in 1977. The algo-
rithm described by AES is a symmetric-key algorithm,
meaning the same key is used for both encrypting and
decrypting the data.
In the United States, AES was announced by the NIST
as U.S. FIPS PUB 197 (FIPS 197) on November 26,
2001.[6] This announcement followed a five-year stan-
dardization process in which fifteen competing designs
were presented and evaluated, before the Rijndael cipher
was selected as the most suitable (see Advanced Encryp-
tion Standard process for more details).
AES became effective as a federal government standard
onMay 26, 2002 after approval by the Secretary of Com-
merce. AES is included in the ISO/IEC 18033-3 stan-
dard. AES is available in many different encryption pack-
ages, and is the first (and only) publicly accessible cipher
approved by the National Security Agency (NSA) for top
secret information when used in an NSA approved cryp-
tographic module (see Security of AES, below).
The name Rijndael (Dutch pronunciation: [ˈrɛindaːl]) is a
play on the names of the two inventors (Joan Daemen
and Vincent Rijmen).

1 Definitive standards

The Advanced Encryption Standard (AES) is defined in
each of:

• FIPS PUB 197: Advanced Encryption Standard
(AES)[6]

• ISO/IEC 18033-3: Information technology — Se-

curity techniques — Encryption algorithms — Part
3: Block ciphers [9]

2 Description of the cipher

AES is based on a design principle known as a
substitution-permutation network, combination of both
substitution and permutation, and is fast in both software
and hardware.[10] Unlike its predecessor DES, AES does
not use a Feistel network. AES is a variant of Rijndael
which has a fixed block size of 128 bits, and a key size
of 128, 192, or 256 bits. By contrast, the Rijndael spec-
ification per se is specified with block and key sizes that
may be any multiple of 32 bits, both with a minimum of
128 and a maximum of 256 bits.
AES operates on a 4 × 4 column-major order matrix of
bytes, termed the state, although some versions of Rijn-
dael have a larger block size and have additional columns
in the state. Most AES calculations are done in a special
finite field.
For instance, if there are 16 bytes, b0, b1, ..., b15 , these
bytes are represented as this matrix:


b0 b4 b8 b12
b1 b5 b9 b13
b2 b6 b10 b14
b3 b7 b11 b15


The key size used for an AES cipher specifies the num-
ber of repetitions of transformation rounds that convert
the input, called the plaintext, into the final output, called
the ciphertext. The number of cycles of repetition are as
follows:

• 10 cycles of repetition for 128-bit keys.

• 12 cycles of repetition for 192-bit keys.

• 14 cycles of repetition for 256-bit keys.

Each round consists of several processing steps, each con-
taining four similar but different stages, including one
that depends on the encryption key itself. A set of reverse
rounds are applied to transform ciphertext back into the
original plaintext using the same encryption key.

1



2 2 DESCRIPTION OF THE CIPHER

2.1 High-level description of the algorithm

1. KeyExpansions—round keys are derived from the
cipher key using Rijndael’s key schedule. AES re-
quires a separate 128-bit round key block for each
round plus one more.

2. InitialRound

(a) AddRoundKey—each byte of the state is com-
bined with a block of the round key using bit-
wise xor.

3. Rounds

(a) SubBytes—a non-linear substitution step
where each byte is replaced with another
according to a lookup table.

(b) ShiftRows—a transposition step where the last
three rows of the state are shifted cyclically a
certain number of steps.

(c) MixColumns—a mixing operation which op-
erates on the columns of the state, combining
the four bytes in each column.

(d) AddRoundKey

4. Final Round (no MixColumns)

(a) SubBytes
(b) ShiftRows
(c) AddRoundKey.

2.2 The SubBytes step
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In the SubBytes step, each byte in the state is replaced with its
entry in a fixed 8-bit lookup table, S; bᵢ = S(aᵢ ).

In the SubBytes step, each byte ai,j in the state ma-
trix is replaced with a SubByte S(ai,j) using an 8-bit
substitution box, the Rijndael S-box. This operation pro-
vides the non-linearity in the cipher. The S-box used
is derived from the multiplicative inverse over GF(28),
known to have good non-linearity properties. To avoid
attacks based on simple algebraic properties, the S-box
is constructed by combining the inverse function with an
invertible affine transformation. The S-box is also chosen
to avoid any fixed points (and so is a derangement), i.e.,
S(ai,j) ̸= ai,j , and also any opposite fixed points, i.e.,

S(ai,j) ⊕ ai,j ̸= 0xFF . While performing the decryp-
tion, Inverse SubBytes step is used, which requires first
taking the affine transformation and then finding the mul-
tiplicative inverse (just reversing the steps used in Sub-
Bytes step).

2.3 The ShiftRows step
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In the ShiftRows step, bytes in each row of the state are shifted
cyclically to the left. The number of places each byte is shifted
differs for each row.

The ShiftRows step operates on the rows of the state; it
cyclically shifts the bytes in each row by a certain offset.
For AES, the first row is left unchanged. Each byte of
the second row is shifted one to the left. Similarly, the
third and fourth rows are shifted by offsets of two and
three respectively. For blocks of sizes 128 bits and 192
bits, the shifting pattern is the same. Row n is shifted left
circular by n-1 bytes. In this way, each column of the
output state of the ShiftRows step is composed of bytes
from each column of the input state. (Rijndael variants
with a larger block size have slightly different offsets).
For a 256-bit block, the first row is unchanged and the
shifting for the second, third and fourth row is 1 byte, 3
bytes and 4 bytes respectively—this change only applies
for the Rijndael cipher when used with a 256-bit block, as
AES does not use 256-bit blocks. The importance of this
step is to avoid the columns being linearly independent, in
which case, AES degenerates into four independent block
ciphers.

2.4 The MixColumns step

Main article: Rijndael mix columns
In the MixColumns step, the four bytes of column of
the state are combined using an invertible linear trans-
formation. The MixColumns function takes four bytes
as input and outputs four bytes, where each input byte
affects all four output bytes. Together with ShiftRows,
MixColumns provides diffusion in the cipher.
During this operation, each column is transformed using
a fixed matrix (matrix multiplied by column gives new
value of column in the state):
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In the MixColumns step, each column of the state is multiplied
with a fixed polynomial c(x) .


2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2


Matrix multiplication is composed of multiplication and
addition of the entries. Entries are 8 bit bytes treated as
coefficients of polynomial of order x7 . Addition is sim-
ply XOR. Multiplication is modulo irreducible polyno-
mial x8 + x4 + x3 + x+ 1 . If processed bit by bit then
after shifting a conditional XORwith 0x1B should be per-
formed if the shifted value is larger than 0xFF (overflow
must be corrected by subtraction of generating polyno-
mial). These are special cases of the usual multiplication
in GF(28) .
In more general sense, each column is treated as a poly-
nomial overGF(28) and is then multiplied modulo x4+1
with a fixed polynomial c(x) = 0x03·x3+x2+x+0x02 .
The coefficients are displayed in their hexadecimal equiv-
alent of the binary representation of bit polynomials from
GF(2)[x] . The MixColumns step can also be viewed as
a multiplication by the shown particular MDS matrix in
the finite fieldGF(28) . This process is described further
in the article Rijndael mix columns.

2.5 The AddRoundKey step

In the AddRoundKey step, the subkey is combined with
the state. For each round, a subkey is derived from the
main key using Rijndael’s key schedule; each subkey is the
same size as the state. The subkey is added by combining
each byte of the state with the corresponding byte of the
subkey using bitwise XOR.

2.6 Optimization of the cipher

On systems with 32-bit or larger words, it is possible to
speed up execution of this cipher by combining the Sub-
Bytes and ShiftRows steps with the MixColumns step by
transforming them into a sequence of table lookups. This
requires four 256-entry 32-bit tables, and utilizes a total
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In the AddRoundKey step, each byte of the state is combined with
a byte of the round subkey using the XOR operation ( ).

of four kilobytes (4096 bytes) of memory— one kilobyte
for each table. A round can then be done with 16 table
lookups and 12 32-bit exclusive-or operations, followed
by four 32-bit exclusive-or operations in the AddRound-
Key step.[11]

If the resulting four-kilobyte table size is too large for a
given target platform, the table lookup operation can be
performed with a single 256-entry 32-bit (i.e. 1 kilobyte)
table by the use of circular rotates.
Using a byte-oriented approach, it is possible to combine
the SubBytes, ShiftRows, and MixColumns steps into a
single round operation.[12]

3 Security

Until May 2009, the only successful published attacks
against the full AES were side-channel attacks on some
specific implementations. The National Security Agency
(NSA) reviewed all the AES finalists, including Rijndael,
and stated that all of them were secure enough for U.S.
Government non-classified data. In June 2003, the U.S.
Government announced that AES could be used to pro-
tect classified information:

The design and strength of all key lengths
of the AES algorithm (i.e., 128, 192 and 256)
are sufficient to protect classified information
up to the SECRET level. TOP SECRET infor-
mation will require use of either the 192 or 256
key lengths. The implementation of AES in
products intended to protect national security
systems and/or information must be reviewed
and certified by NSA prior to their acquisition
and use.[13]

AES has 10 rounds for 128-bit keys, 12 rounds for 192-
bit keys, and 14 rounds for 256-bit keys.
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By 2006, the best known attacks were on 7 rounds for
128-bit keys, 8 rounds for 192-bit keys, and 9 rounds for
256-bit keys.[14]

3.1 Known attacks

For cryptographers, a cryptographic “break” is anything
faster than a brute force attack — i.e., performing one
trial decryption for each possible key in sequence (see
Cryptanalysis). A break can thus include results that
are infeasible with current technology; however, theoreti-
cal though impractical breaks can illuminate vulnerability
patterns in some cases. The largest successful publicly
known brute force attack against any block-cipher en-
cryption was against a 64-bit RC5 key by distributed.net
in 2006.[15]

The key space to be searched by brute force increases by
a factor of 2 for each additional bit of key length (as-
suming, importantly, random choice of keys) which alone
increases the degree of difficulty for a brute force search
very rapidly. Mere key length is not, however, regarded as
sufficient for security against attack, for there are ciphers
with very long keys which have been found vulnerable.
AES has a fairly simple algebraic description.[16] In 2002,
a theoretical attack, termed the "XSL attack", was an-
nounced by Nicolas Courtois and Josef Pieprzyk, pur-
porting to show a weakness in the AES algorithm due to
its simple description.[17] Since then, other papers have
shown that the attack as originally presented is unwork-
able; see XSL attack on block ciphers.
During the AES selection process, developers of compet-
ing algorithms wrote of Rijndael, "...we are concerned
about [its] use...in security-critical applications.”[18]
However, in October 2000 at the end of the AES selec-
tion process, Bruce Schneier, a developer of the compet-
ing algorithm Twofish, wrote that while he thought suc-
cessful academic attacks on Rijndael would be developed
someday, he does not “believe that anyone will ever dis-
cover an attack that will allow someone to read Rijndael
traffic.”[19]

On July 1, 2009, Bruce Schneier blogged[20] about
a related-key attack on the 192-bit and 256-bit ver-
sions of AES, discovered by Alex Biryukov and Dmitry
Khovratovich,[21] which exploits AES’s somewhat simple
key schedule and has a complexity of 2119. In December
2009 it was improved to 299.5. This is a follow-up to an at-
tack discovered earlier in 2009 by Alex Biryukov, Dmitry
Khovratovich, and Ivica Nikolić, with a complexity of
296 for one out of every 235 keys.[22] However, related-
key attacks are not of concern in any properly designed
cryptographic protocol, as a properly designed protocol
(i.e., implementational software) will take care not to al-
low related-keys, forcing key choice to be as random as
possible.
Another attack was blogged by Bruce Schneier[23] on July

30, 2009 and released as a preprint[24] on August 3, 2009.
This new attack, by Alex Biryukov, Orr Dunkelman,
Nathan Keller, Dmitry Khovratovich, and Adi Shamir, is
against AES-256 that uses only two related keys and 239
time to recover the complete 256-bit key of a 9-round ver-
sion, or 245 time for a 10-round version with a stronger
type of related subkey attack, or 270 time for an 11-round
version. 256-bit AES uses 14 rounds, so these attacks
aren't effective against full AES.
The practicality of these attacks with stronger related
keys has been criticized,[25] for instance, by the paper
on “chosen-key-relations-in-the-middle” attacks on AES-
128 authored by Vincent Rijmen in 2010.[26]

In November 2009, the first known-key distinguishing at-
tack against a reduced 8-round version of AES-128 was
released as a preprint.[27] This known-key distinguishing
attack is an improvement of the rebound, or the start-
from-the-middle attack, against AES-like permutations,
which view two consecutive rounds of permutation as the
application of a so-called Super-Sbox. It works on the
8-round version of AES-128, with a time complexity of
248, and a memory complexity of 232. 128-bit AES uses
10 rounds, so this attack isn't effective against full AES-
128.
The first key-recovery attacks on full AES were due to
Andrey Bogdanov, Dmitry Khovratovich, and Christian
Rechberger, and were published in 2011.[28] The attack
is a biclique attack and is faster than brute force by a fac-
tor of about four. It requires 2126.2 operations to recover
an AES-128 key. For AES-192 and AES-256, 2190.2 and
2254.6 operations are needed, respectively. This result has
been further improved to 2126.0 for AES-128, 2189.9 for
AES-192 and 2254.3 for AES-256,[29] which are the cur-
rent best results in key recovery attack against AES.
This is a very small gain, as a 126-bit key (instead of 128-
bits) would still take billions of years to brute force on
current and foreseeable hardware. Also, the authors cal-
culate the best attack using their technique on AES with
a 128 bit key requires storing 288 bits of data (though this
has later been improved to 256,[29] which is 9 petabytes).
That works out to about 38 trillion terabytes of data,
which is more than all the data stored on all the com-
puters on the planet in 2016. As such this is a seriously
impractical attack which has no practical implication on
AES security.[30]

According to the Snowden documents, the NSA is doing
research on whether a cryptographic attack based on tau
statistic may help to break AES.[31]

At present, there are no known practical attacks that
would allow anyone to read correctly implemented AES
encrypted data.

3.2 Side-channel attacks

Side-channel attacks do not attack the underlying cipher,
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and thus are not related to cipher security in the usually
discussed context, though they may be important in prac-
tice. They attack implementations of the cipher on hard-
ware or software systems which inadvertently leak data.
There are several such known attacks on certain imple-
mentations of AES.
In April 2005, D.J. Bernstein announced a cache-timing
attack that he used to break a custom server that used
OpenSSL's AES encryption.[32] The attack required over
200 million chosen plaintexts.[33] The custom server was
designed to give out as much timing information as possi-
ble (the server reports back the number of machine cycles
taken by the encryption operation); however, as Bernstein
pointed out, “reducing the precision of the server’s times-
tamps, or eliminating them from the server’s responses,
does not stop the attack: the client simply uses round-
trip timings based on its local clock, and compensates for
the increased noise by averaging over a larger number of
samples.”[32]

In October 2005, Dag Arne Osvik, Adi Shamir and Eran
Tromer presented a paper demonstrating several cache-
timing attacks against AES.[34] One attack was able to
obtain an entire AES key after only 800 operations trig-
gering encryptions, in a total of 65 milliseconds. This
attack requires the attacker to be able to run programs on
the same system or platform that is performing AES.
In December 2009 an attack on some hardware imple-
mentations was published that used differential fault anal-
ysis and allows recovery of a key with a complexity of
232.[35]

In November 2010 Endre Bangerter, David Gullasch and
Stephan Krenn published a paper which described a prac-
tical approach to a “near real time” recovery of secret
keys from AES-128 without the need for either cipher
text or plaintext. The approach also works on AES-
128 implementations that use compression tables, such as
OpenSSL.[36] Like some earlier attacks this one requires
the ability to run unprivileged code on the system per-
forming the AES encryption, which may be achieved by
malware infection far more easily than commandeering
the root account.[37]

4 NIST/CSEC validation

The CryptographicModule Validation Program (CMVP)
is operated jointly by the United States Government’s
National Institute of Standards and Technology (NIST)
Computer Security Division and the Communications
Security Establishment (CSE) of the Government of
Canada. The use of cryptographic modules validated to
NIST FIPS 140-2 is required by the United States Gov-
ernment for encryption of all data that has a classifica-
tion of Sensitive but Unclassified (SBU) or above. From
NSTISSP #11, National Policy Governing the Acquisi-
tion of Information Assurance: “Encryption products for

protecting classified information will be certified byNSA,
and encryption products intended for protecting sensitive
information will be certified in accordance with NIST
FIPS 140-2.”[38]

The Government of Canada also recommends the use of
FIPS 140 validated cryptographic modules in unclassified
applications of its departments.
Although NIST publication 197 (“FIPS 197”) is the
unique document that covers the AES algorithm, vendors
typically approach the CMVP under FIPS 140 and ask to
have several algorithms (such as Triple DES or SHA1)
validated at the same time. Therefore, it is rare to find
cryptographic modules that are uniquely FIPS 197 vali-
dated and NIST itself does not generally take the time to
list FIPS 197 validated modules separately on its public
web site. Instead, FIPS 197 validation is typically just
listed as an “FIPS approved: AES” notation (with a spe-
cific FIPS 197 certificate number) in the current list of
FIPS 140 validated cryptographic modules.
The Cryptographic Algorithm Validation Program
(CAVP)[39] allows for independent validation of the
correct implementation of the AES algorithm at a
reasonable cost. Successful validation results in being
listed on the NIST validations page. This testing is a pre-
requisite for the FIPS 140-2 module validation described
below. However, successful CAVP validation in no way
implies that the cryptographic module implementing the
algorithm is secure. A cryptographic module lacking
FIPS 140-2 validation or specific approval by the NSA
is not deemed secure by the US Government and cannot
be used to protect government data.[38]

FIPS 140-2 validation is challenging to achieve both tech-
nically and fiscally.[40] There is a standardized battery of
tests as well as an element of source code review that must
be passed over a period of a few weeks. The cost to per-
form these tests through an approved laboratory can be
significant (e.g., well over $30,000 US)[40] and does not
include the time it takes to write, test, document and pre-
pare a module for validation. After validation, modules
must be re-submitted and re-evaluated if they are changed
in any way. This can vary from simple paperwork updates
if the security functionality did not change to a more sub-
stantial set of re-testing if the security functionality was
impacted by the change.

5 Test vectors

Test vectors are a set of known ciphers for a given input
and key. NIST distributes the reference of AES test vec-
tors as AES Known Answer Test (KAT) Vectors (in ZIP
format).
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6 Performance

High speed and low RAM requirements were criteria of
the AES selection process. As the chosen algorithm, AES
performed well on a wide variety of hardware, from 8-bit
smart cards to high-performance computers.
On a Pentium Pro, AES encryption requires 18 clock cy-
cles per byte,[41] equivalent to a throughput of about 11
MB/s for a 200 MHz processor. On a 1.7 GHz Pentium
M throughput is about 60 MB/s.
On Intel Core i3/i5/i7 and AMD APU and FX CPUs
supporting AES-NI instruction set extensions, through-
put can be over 700 MB/s per thread.[42]

7 Implementations

Main article: AES implementations

8 See also

• Disk encryption

• Whirlpool – hash function created by Vincent Rij-
men and Paulo S. L. M. Barreto

• Rijndael key schedule

• Rijndael S-box
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