
Mobile Top 10 2014-M6 from The Open Web Application Security Project is available under a 
Creative Commons Attribution-ShareAlike 3.0 Unported license. UMGC has modified this work 

and it is available under the original license. 

https://www.owasp.org/index.php/Mobile_Top_10_2014-M6
https://creativecommons.org/licenses/by-sa/3.0/us/


Mobile Top 10 2014-M6 

Broken Cryptography 

Threat Agents Attack Vectors Security Weakness 
Technical 

Impacts 
Business Impacts 

Application 

Specific 

Exploitability 

EASY 

Prevalence 

COMMON 

Detectability 

EASY 

Impact 

SEVERE 

Application / Business 

Specific 

Threat agents 

include the 

following: 

anyone with 

physical access 

to data that 

has been 

encrypted 

improperly, or 

mobile 

malware 

acting on an 

adversary's 

behalf. 

Attack vectors 

include the 

following: 

decryption of 

data via 

physical access 

to the device 

or network 

traffic capture, 

or malicious 

apps on the 

device with 

access to the 

encrypted 

data. 

In order to exploit this 

weakness, an adversary must 

successfully return encrypted 

code or sensitive data to its 

original unencrypted form due 

to weak encryption algorithms 

or flaws within the encryption 

process. 

This 

vulnerability 

will result in 

the 

unauthorized 

retrieval of 

sensitive 

information 

from the 

mobile device. 

This vulnerability can 

have a number of 

different business 

impacts. Typically, 

broken cryptography 

will result in the 

following: 

• Privacy

Violations;

• Information

Theft;

• Code Theft;

• Intellectual

Property Theft;

or

• Reputational

Damage.

1 

https://www.owasp.org/index.php/Mobile_Top_10_2014-M6


Am I Vulnerable to Broken Cryptography? 

Insecure use of cryptography is common in most mobile apps that leverage encryption. There are two 

fundamental ways that broken cryptography is manifested within mobile apps. First, the mobile app 

may use a process behind the encryption / decryption that is fundamentally flawed and can be exploited 

by the adversary to decrypt sensitive data. Second, the mobile app may implement or leverage an 

encryption / decryption algorithm that is weak in nature and can be directly decrypted by the adversary. 

The following subsections explore both of these scenarios in more depth: 

Reliance Upon Built-In Code Encryption Processes 

By default, iOS applications are protected (in theory) from reverse engineering via code encryption. The 

iOS security model requires that apps be encrypted and signed by trustworthy sources in order to 

execute in non-jailbroken environments. Upon start-up, the iOS app loader will decrypt the app in 

memory and proceed to execute the code after its signature has been verified by iOS. This feature, in 

theory, prevents an attacker from conducting binary attacks against an iOS mobile app. 

Using freely available tools like ClutchMod or GBD, an adversary will download the encrypted app onto 

their jailbroken device and take a snapshot of the decrypted app once the iOS loader loads it into 

memory and decrypts it (just before the loader kicks off execution). Once the adversary takes the 

snapshot and stores it on disk, the adversary can use tools like IDA Pro or Hopper to easily perform static 

/ dynamic analysis of the app and conduct further binary attacks. 

Bypassing built-in code encryption algorithms is trivial at best. Always assume that an adversary will be 

able to bypass any built-in code encryption offered by the underlying mobile OS. For more information 

about additional steps you can take to provide additional layers of reverse engineering prevention, see 

M10. 

Poor Key Management Processes 

The best algorithms don't matter if you mishandle your keys. Many make the mistake of using the 

correct encryption algorithm, but implementing their own protocol for employing it. Some examples of 

problems here include: 

• Including the keys in the same attacker-readable directory as the encrypted content; 
2 

 



• Making the keys otherwise available to the attacker; 

• Avoid the use of hardcoded keys within your binary; and 

• Keys may be intercepted via binary attacks. See M10 for more information on preventing binary 

attacks. 

Creation and Use of Custom Encryption Protocols 

There is no easier way to mishandle encryption--mobile or otherwise--than to try to create and use your 

own encryption algorithms or protocols. 

Always use modern algorithms that are accepted as strong by the security community, and whenever 

possible leverage the state of the art encryption APIs within your mobile platform. Binary attacks may 

result in adversary identifying the common libraries you have used along with any hardcoded keys in the 

binary. In cases of very high security requirements around encryption, you should strongly consider the 

use of whitebox cryptography. See M10 for more information on preventing binary attacks that could 

lead to the exploitation of common libraries. 

Use of Insecure and/or Deprecated Algorithms 

Many cryptographic algorithms and protocols should not be used because they have been shown to 

have significant weaknesses or are otherwise insufficient for modern security requirements. These 

include: 

• RC2 

• MD4 

• MD5 

• SHA1 

3 

 


	Mobile Top 10 2014-M6
	Am I Vulnerable to Broken Cryptography?
	Reliance Upon Built-In Code Encryption Processes
	Poor Key Management Processes
	Creation and Use of Custom Encryption Protocols
	Use of Insecure and/or Deprecated Algorithms


