
SQL Injection Prevention Cheat Sheet from The Open Web Application Security Project is available under a
Creative Commons Attribution-ShareAlike 3.0 Unported license. UMGC has modified this work and it is available

under the original license.

SQL Injection Prevention Cheat Sheet

Introduction

This article is focused on providing clear, simple, actionable guidance for preventing SQL Injection flaws

in your applications. SQL Injection attacks are unfortunately very common, and this is due to two

factors:

1. the significant prevalence of SQL Injection vulnerabilities, and

2. the attractiveness of the target (i.e., the database typically contains all the interesting/critical

data for your application).

It’s somewhat shameful that there are so many successful SQL Injection attacks occurring, because it is

EXTREMELY simple to avoid SQL Injection vulnerabilities in your code.

SQL Injection flaws are introduced when software developers create dynamic database queries that

include user supplied input. To avoid SQL injection flaws is simple. Developers need to either: a) stop

writing dynamic queries; and/or b) prevent user supplied input which contains malicious SQL from

affecting the logic of the executed query.

This article provides a set of simple techniques for preventing SQL Injection vulnerabilities by avoiding

these two problems. These techniques can be used with practically any kind of programming language

with any type of database. There are other types of databases, like XML databases, which can have

similar problems (e.g., XPath and XQuery injection) and these techniques can be used to protect them as

well.

Primary Defenses:

• Option #1: Use of Prepared Statements (Parameterized Queries)

• Option #2: Use of Stored Procedures

• Option #3: Escaping all User Supplied Input

1

https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet
https://creativecommons.org/licenses/by-sa/3.0/

Additional Defenses:

• Also Enforce: Least Privilege

• Also Perform: White List Input Validation

Unsafe Example

SQL injection flaws typically look like this:

The following (Java) example is UNSAFE, and would allow an attacker to inject code into the query that

would be executed by the database. The unvalidated “customerName” parameter that is simply

appended to the query allows an attacker to inject any SQL code they want. Unfortunately, this method

for accessing databases is all too common.

 String query = "SELECT account_balance FROM user_data WHERE user_name = "

 + request.getParameter("customerName");

 try {

 Statement statement = connection.createStatement(…);

 ResultSet results = statement.executeQuery(query);

 }

Primary Defenses

Defense Option 1: Prepared Statements (with Parameterized Queries)

The use of prepared statements with variable binding (aka parameterized queries) is how all developers

should first be taught how to write database queries. They are simple to write, and easier to understand

than dynamic queries. Parameterized queries force the developer to first define all the SQL code, and

then pass in each parameter to the query later. This coding style allows the database to distinguish

between code and data, regardless of what user input is supplied.

Prepared statements ensure that an attacker is not able to change the intent of a query, even if SQL

commands are inserted by an attacker. In the safe example below, if an attacker were to enter the

2

userID of tom' or '1'='1, the parameterized query would not be vulnerable and would instead look for a

username which literally matched the entire string tom' or '1'='1.

Language specific recommendations:

• Java EE – use PreparedStatement() with bind variables

• .NET – use parameterized queries like SqlCommand() or OleDbCommand() with bind variables

• PHP – use PDO with strongly typed parameterized queries (using bindParam())

• Hibernate - use createQuery() with bind variables (called named parameters in Hibernate)

• SQLite - use sqlite3_prepare() to create a statement object

In rare circumstances, prepared statements can harm performance. When confronted with this

situation, it is best to either a) strongly validate all data or b) escape all user supplied input using an

escaping routine specific to your database vendor as described below, rather than using a prepared

statement.

Safe Java Prepared Statement Example

The following code example uses a PreparedStatement, Java's implementation of a parameterized

query, to execute the same database query.

 String custname = request.getParameter("customerName"); // This should REALLY be validated

too

 // perform input validation to detect attacks

 String query = "SELECT account_balance FROM user_data WHERE user_name = ? ";

 PreparedStatement pstmt = connection.prepareStatement(query);
 pstmt.setString(1, custname);

 ResultSet results = pstmt.executeQuery();

3

Safe C# .NET Prepared Statement Example

With .NET, it's even more straightforward. The creation and execution of the query doesn't change. All

you have to do is simply pass the parameters to the query using the Parameters.Add() call as shown

here.

 String query =

 "SELECT account_balance FROM user_data WHERE user_name = ?";

 try {

 OleDbCommand command = new OleDbCommand(query, connection);

 command.Parameters.Add(new OleDbParameter("customerName", CustomerName
Name.Text));
 OleDbDataReader reader = command.ExecuteReader();

 // …

 } catch (OleDbException se) {

 // error handling

 }

We have shown examples in Java and .NET but practically all other languages, including Cold Fusion, and

Classic ASP, support parameterized query interfaces. Even SQL abstraction layers, like the Hibernate

Query Language (HQL) have the same type of injection problems (which we call HQL Injection). HQL

supports parameterized queries as well, so we can avoid this problem:

Hibernate Query Language (HQL) Prepared Statement (Named Parameters) Examples

 First is an unsafe HQL Statement

 Query unsafeHQLQuery = session.createQuery("from Inventory where

productID='"+userSuppliedParameter+"'");

 Here is a safe version of the same query using named parameters

 Query safeHQLQuery = session.createQuery("from Inventory where productID=:productid");

 safeHQLQuery.setParameter("productid", userSuppliedParameter);

For examples of parameterized queries in other languages, including Ruby, PHP, Cold Fusion, and Perl,

see the Query Parameterization Cheat Sheet or http://bobby-tables.com/.

4

Developers tend to like the Prepared Statement approach because all the SQL code stays within the

application. This makes your application relatively database independent.

Defense Option 2: Stored Procedures

Stored procedures are not always safe from SQL injection. However, certain standard stored procedure

programming constructs have the same effect as the use of parameterized queries when implemented

safely* which is the norm for most stored procedure languages. They require the developer to just build

SQL statements with parameters which are automatically parameterized unless the developer does

something largely out of the norm. The difference between prepared statements and stored procedures

is that the SQL code for a stored procedure is defined and stored in the database itself, and then called

from the application. Both of these techniques have the same effectiveness in preventing SQL injection

so your organization should choose which approach makes the most sense for you.

*Note: 'Implemented safely' means the stored procedure does not include any unsafe dynamic SQL

generation. Developers do not usually generate dynamic SQL inside stored procedures. However, it can

be done, but should be avoided. If it can't be avoided, the stored procedure must use input validation or

proper escaping as described in this article to make sure that all user supplied input to the stored

procedure can't be used to inject SQL code into the dynamically generated query. Auditors should

always look for uses of sp_execute, execute or exec within SQL Server stored procedures. Similar audit

guidelines are necessary for similar functions for other vendors.

There are also several cases where stored procedures can increase risk. For example, on MS SQL server,

you have 3 main default roles: db_datareader, db_datawriter and db_owner. Before stored procedures

came into use, DBA's would give db_datareader or db_datawriter rights to the webservice's user,

depending on the requirements. However, stored procedures require execute rights, a role that is not

available by default. Some setups where the user management has been centralized, but is limited to

those 3 roles, cause all web apps to run under db_owner rights so stored procedures can work.

Naturally, that means that if a server is breached the attacker has full rights to the database, where

previously they might only have had read-access. More on this topic here.

http://www.sqldbatips.com/showarticle.asp?ID=8

5

Safe Java Stored Procedure Example

The following code example uses a CallableStatement, Java's implementation of the stored procedure

interface, to execute the same database query. The "sp_getAccountBalance" stored procedure would

have to be predefined in the database and implement the same functionality as the query defined

above.

 String custname = request.getParameter("customerName"); // This should REALLY be validated

 try {

 CallableStatement cs = connection.prepareCall("{call sp_getAccountBalance(?)}");
 cs.setString(1, custname);

 ResultSet results = cs.executeQuery();

 // … result set handling

 } catch (SQLException se) {

 // … logging and error handling

 }

Safe VB .NET Stored Procedure Example

The following code example uses a SqlCommand, .NET’s implementation of the stored procedure

interface, to execute the same database query. The "sp_getAccountBalance" stored procedure would

have to be predefined in the database and implement the same functionality as the query defined

above.

 Try

 Dim command As SqlCommand = new SqlCommand("sp_getAccountBalance",

connection)

 command.CommandType = CommandType.StoredProcedure
 command.Parameters.Add(new SqlParameter("@CustomerName",
CustomerName.Text))
 Dim reader As SqlDataReader = command.ExecuteReader()

 ‘ …

 Catch se As SqlException

 ‘ error handling

 End Try

6

Defense Option 3: White List Input Validation

Various parts of SQL queries aren't legal locations for the use of bind variables, such as the names of

tables or columns, and the sort order indicator (ASC or DESC). In such situations, input validation or

query redesign is the most appropriate defense. For the names of tables or columns, ideally those values

come from the code, and not from user parameters. But if user parameter values are used to make

different for table names and column names, then the parameter values should be mapped to the

legal/expected table or column names to make sure unvalidated user input doesn't end up in the query.

Please note, this is a symptom of poor design and a full re-write should be considered if time allows.

Here is an example of table name validation.

 String tableName;

 switch(PARAM):

 case "Value1": tableName = "fooTable";

 break;

 case "Value2": tableName = "barTable";

 break;

 ...

 default : throw new InputValidationException("unexpected value provided for table name");

The tableName can then be directly appended to the SQL query since it is now known to be one of the

legal and expected values for a table name in this query. Keep in mind that generic table validation

functions can lead to data loss as table names are used in queries where they are not expected.

For something simple like a sort order, it would be best if the user supplied input is converted to a

boolean, and then that boolean is used to select the safe value to append to the query. This is a very

standard need in dynamic query creation. For example:

 public String someMethod(boolean sortOrder) {

 String SQLquery = "some SQL ... order by Salary " + (sortOrder ? "ASC" : "DESC");

 ...

Any time user input can be converted to a non-String, like a date, numeric, boolean, enumerated type,

etc. before it is appended to a query, or used to select a value to append to the query, this ensures it is

safe to do so.
7

Input validation is also recommended as a secondary defense in ALL cases, even when using bind

variables as is discussed later in this article. More techniques on how to implement strong white list

input validation is described in the Input Validation Cheat Sheet.

Defense Option 4: Escaping All User Supplied Input

This technique should only be used as a last resort, when none of the above are feasible. Input

validation is probably a better choice as this methodology is frail compared to other defenses and we

cannot guarantee it will prevent all SQL Injection in all situations.

This technique is to escape user input before putting it in a query. It is very database specific in its

implementation. Its usually only recommended to retrofit legacy code when implementing input

validation isn't cost effective. Applications built from scratch, or applications requiring low risk tolerance

should be built or re-written using parameterized queries, stored procedures, or some kind of Object

Relational Mapper (ORM) that builds your queries for you.

This technique works like this. Each DBMS supports one or more character escaping schemes specific to

certain kinds of queries. If you then escape all user supplied input using the proper escaping scheme for

the database you are using, the DBMS will not confuse that input with SQL code written by the

developer, thus avoiding any possible SQL injection vulnerabilities.

• Full details on ESAPI are available here on OWASP.

• The javadoc for ESAPI is available here at its Google Code repository.

• You can also directly browse the source at Google, which is frequently helpful if the javadoc isn't

perfectly clear.

To find the javadoc specifically for the database encoders, click on the ‘Codec’ class on the left hand

side. There are lots of Codecs implemented. The two Database specific codecs are OracleCodec, and

MySQLCodec.

Just click on their names in the ‘All Known Implementing Classes:’ at the top of the Interface Codec

page.

8

At this time, ESAPI currently has database encoders for:

• Oracle

• MySQL (Both ANSI and native modes are supported)

Database encoders for:

• SQL Server

• PostgreSQL

Are forthcoming. If your database encoder is missing, please let us know.

Database Specific Escaping Details

If you want to build your own escaping routines, here are the escaping details for each of the databases

that we have developed ESAPI Encoders for:

Oracle Escaping

This information is based on the Oracle Escape character information found

here:http://www.orafaq.com/wiki/SQL_FAQ#How_does_one_escape_special_characters_when_writing

_SQL_queries.3F

Escaping Dynamic Queries

To use an ESAPI database codec is pretty simple. An Oracle example looks something like:

 ESAPI.encoder().encodeForSQL(new OracleCodec(), queryparam);

So, if you had an existing Dynamic query being generated in your code that was going to Oracle that

looked like this:

 String query = "SELECT user_id FROM user_data WHERE user_name = '" +

req.getParameter("userID")

 + "' and user_password = '" + req.getParameter("pwd") +"'";

 try {

 Statement statement = connection.createStatement(…);
9

 ResultSet results = statement.executeQuery(query);

 }

You would rewrite the first line to look like this:

Codec ORACLE_CODEC = new OracleCodec();
 String query = "SELECT user_id FROM user_data WHERE user_name = '" +

 ESAPI.encoder().encodeForSQL(ORACLE_CODEC, req.getParameter("userID")) + "' and

user_password = '"

 + ESAPI.encoder().encodeForSQL(ORACLE_CODEC, req.getParameter("pwd")) +"'";

And it would now be safe from SQL injection, regardless of the input supplied.

For maximum code readability, you could also construct your own OracleEncoder.

 Encoder oe = new OracleEncoder();

 String query = "SELECT user_id FROM user_data WHERE user_name = '"

 + oe.encode(req.getParameter("userID")) + "' and user_password = '"

 + oe.encode(req.getParameter("pwd")) +"'";

With this type of solution, all your developers would have to do is wrap each user supplied parameter

being passed in into an ESAPI.encoder().encodeForOracle() call or whatever you named it, and you

would be done.

Turn off character replacement

Use SET DEFINE OFF or SET SCAN OFF to ensure that automatic character replacement is turned off. If

this character replacement is turned on, the & character will be treated like a SQLPlus variable prefix

that could allow an attacker to retrieve private data.

See http://download.oracle.com/docs/cd/B19306_01/server.102/b14357/ch12040.htm#i2698854 and h

ttp://stackoverflow.com/questions/152837/how-to-insert-a-string-which-contains-anfor more

information

10

Escaping Wildcard characters in Like Clauses

The LIKE keyword allows for text scanning searches. In Oracle, the underscore '_' character matches only

one character, while the ampersand '%' is used to match zero or more occurrences of any characters.

These characters must be escaped in LIKE clause criteria. For example:

SELECT name FROM emp

WHERE id LIKE '%/_%' ESCAPE '/';

SELECT name FROM emp

WHERE id LIKE '%\%%' ESCAPE '\';

Oracle 10g escaping

An alternative for Oracle 10g and later is to place { and } around the string to escape the entire string.

However, you have to be careful that there isn't a } character already in the string. You must search for

these and if there is one, then you must replace it with }}. Otherwise that character will end the escaping

early, and may introduce a vulnerability.

MySQL Escaping

MySQL supports two escaping modes:

1. ANSI_QUOTES SQL mode, and a mode with this off, which we call

2. MySQL mode.

ANSI SQL mode: Simply encode all ' (single tick) characters with '' (two single ticks)

MySQL mode, do the following:

 NUL (0x00) --> \0 [This is a zero, not the letter O]

 BS (0x08) --> \b

 TAB (0x09) --> \t

 LF (0x0a) --> \n

 CR (0x0d) --> \r

 SUB (0x1a) --> \Z

 " (0x22) --> \"

11

 % (0x25) --> \%

 ' (0x27) --> \'

 \ (0x5c) --> \\

 _ (0x5f) --> _

 all other non-alphanumeric characters with ASCII values less than 256 --> \c

 where 'c' is the original non-alphanumeric character.

This information is based on the MySQL Escape character information found here:

http://mirror.yandex.ru/mirrors/ftp.mysql.com/doc/refman/5.0/en/string-syntax.html

SQL Server Escaping

We have not implemented the SQL Server escaping routine yet, but the following has good pointers to

articles describing how to prevent SQL injection attacks on SQL server

• http://blogs.msdn.com/raulga/archive/2007/01/04/dynamic-sql-sql-injection.aspx

DB2 Escaping

This information is based on DB2 WebQuery special characters found here: https://www-

304.ibm.com/support/docview.wss?uid=nas14488c61e3223e8a78625744f00782983 as well as some

information from Oracle's JDBC DB2 driver found here:

http://docs.oracle.com/cd/E12840_01/wls/docs103/jdbc_drivers/sqlescape.html

Information in regards to differences between several DB2 Universal drivers can be found

here: http://publib.boulder.ibm.com/infocenter/db2luw/v8/index.jsp?topic=/com.ibm.db2.udb.doc/ad/

rjvjcsqc.htm

Hex-encoding all input

A somewhat special case of escaping is the process of hex-encode the entire string received from the

user (this can be seen as escaping every character). The web application should hex-encode the user

input before including it to the SQL statement. The SQL statement should take into account this fact,

and accordingly compare the data. For example, if we have to look up a record matching a sessionID,

and the user transmitted the string abc123 as session ID, the select statement would be:

12

 SELECT ... FROM session

 WHERE hex_encode (sessionID) = '616263313233'

(hex_encode should be replace by the particular facility for the database being used). The string

606162313233 is the hex encoded version of the string received from the user (it is the sequence of hex

values of the ASCII/UTF-8 codes of the user data).

If an attacker were to transmit a string containing a single-quote character followed by their attempt to

inject SQL code, the constructed SQL statement will only look like:

 WHERE hex_encode (...) = '2720 ... '

27 being the ASCII code (in hex) of the single-quote, which is simply hex-encoded like any other

character in the string. The resulting SQL can only contain numeric digits and a to f letters, and never any

special character that could enable an SQL injection.

Escaping SQLi in PhP

Use prepared statements and parameterized queries. These are SQL statements that are sent to and

parsed by the database server separately from any parameters. This way it is impossible for an attacker

to inject malicious SQL.

You basically have two options to achieve this:

Using PDO (for any supported database driver):

$stmt = $pdo->prepare('SELECT * FROM employees WHERE name = :name');

$stmt->execute(array('name' => $name));

foreach ($stmt as $row) {

 // do something with $row

}

Using MySQLi (for MySQL):

13

$stmt = $dbConnection->prepare('SELECT * FROM employees WHERE name = ?');

$stmt->bind_param('s', $name);

$stmt->execute();

$result = $stmt->get_result();

while ($row = $result->fetch_assoc()) {

 // do something with $row

}

If you're connecting to a database other than MySQL, there is a driver-specific second option that you

can refer to (e.g. pg_prepare() and pg_execute() for PostgreSQL). PDO is the universal option.

Additional Defenses

Beyond adopting one of the four primary defenses, we also recommend adopting all of these additional

defenses in order to provide defense in depth. These additional defenses are:

• Least Privilege

• White List Input Validation

Least Privilege

To minimize the potential damage of a successful SQL injection attack, you should minimize the

privileges assigned to every database account in your environment. Do not assign DBA or admin type

access rights to your application accounts. We understand that this is easy, and everything just ‘works’

when you do it this way, but it is very dangerous. Start from the ground up to determine what access

rights your application accounts require, rather than trying to figure out what access rights you need to

take away. Make sure that accounts that only need read access are only granted read access to the

tables they need access to. If an account only needs access to portions of a table, consider creating a

view that limits access to that portion of the data and assigning the account access to the view instead,

rather than the underlying table. Rarely, if ever, grant create or delete access to database accounts.

14

If you adopt a policy where you use stored procedures everywhere, and don’t allow application accounts

to directly execute their own queries, then restrict those accounts to only be able to execute the stored

procedures they need. Don’t grant them any rights directly to the tables in the database.

SQL injection is not the only threat to your database data. Attackers can simply change the parameter

values from one of the legal values they are presented with, to a value that is unauthorized for them,

but the application itself might be authorized to access. As such, minimizing the privileges granted to

your application will reduce the likelihood of such unauthorized access attempts, even when an attacker

is not trying to use SQL injection as part of their exploit.

While you are at it, you should minimize the privileges of the operating system account that the DBMS

runs under. Don't run your DBMS as root or system! Most DBMSs run out of the box with a very

powerful system account. For example, MySQL runs as system on Windows by default! Change the

DBMS's OS account to something more appropriate, with restricted privileges.

Multiple DB Users

The designer of web applications should not only avoid using the same owner/admin account in the web

applications to connect to the database. Different DB users could be used for different web applications.

In general, each separate web application that requires access to the database could have a designated

database user account that the web-app will use to connect to the DB. That way, the designer of the

application can have good granularity in the access control, thus reducing the privileges as much as

possible. Each DB user will then have select access to what it needs only, and write-access as needed.

As an example, a login page requires read access to the username and password fields of a table, but no

write access of any form (no insert, update, or delete). However, the sign-up page certainly requires

insert privilege to that table; this restriction can only be enforced if these web apps use different DB

users to connect to the database.

Views

SQL views can further increase the granularity of access by limiting the read access to specific fields of a

table or joins of tables. It could potentially have additional benefits: for example, suppose that the

system is required (perhaps due to some specific legal requirements) to store the passwords of the

users, instead of salted-hashed passwords. The designer could use views to compensate for this
15

limitation; revoke all access to the table (from all DB users except the owner/admin) and create a view

that outputs the hash of the password field and not the field itself. Any SQL injection attack that

succeeds in stealing DB information will be restricted to stealing the hash of the passwords (could even

be a keyed hash), since no DB user for any of the web applications has access to the table itself.

White List Input Validation

In addition to being a primary defense when nothing else is possible (e.g., when a bind variable isn't

legal), input validation can also be a secondary defense used to detect unauthorized input before it is

passed to the SQL query. For more information please see the Input Validation Cheat Sheet. Proceed

with caution here. Validated data is not necessarily safe to insert into SQL queries via string building.

16

	SQL Injection Prevention Cheat Sheet
	Introduction
	Unsafe Example

	Primary Defenses
	Defense Option 1: Prepared Statements (with Parameterized Queries)
	Safe Java Prepared Statement Example
	Safe C# .NET Prepared Statement Example
	Hibernate Query Language (HQL) Prepared Statement (Named Parameters) Examples

	Defense Option 2: Stored Procedures
	Safe Java Stored Procedure Example
	Safe VB .NET Stored Procedure Example

	Defense Option 3: White List Input Validation
	Defense Option 4: Escaping All User Supplied Input
	Database Specific Escaping Details
	Oracle Escaping
	Escaping Dynamic Queries
	Turn off character replacement
	Escaping Wildcard characters in Like Clauses
	Oracle 10g escaping
	MySQL Escaping
	SQL Server Escaping
	DB2 Escaping
	Hex-encoding all input
	Escaping SQLi in PhP

	Additional Defenses
	Least Privilege
	Multiple DB Users
	Views

	White List Input Validation

