
Detection and Modeling of Cyber Attacks with Petri Nets by Bartosz Jasiul , Marcin Szpyrka, and 
Joanna Śliwa from Entropy is available under a Creative Commons Attribution-NonCommercial-

ShareAlike 4.0 International license. © 1996–2016, MDPI AG. UMGC has modified this work 
and it is available under the original license.

http://www.mdpi.com/1099-4300/16/12/6602?trendmd-shared=0
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/


Entropy 2014, 16, 6602-6623; doi:10.3390/e16126602
OPEN ACCESS

entropy
ISSN 1099-4300

www.mdpi.com/journal/entropy

Article

Detection and Modeling of Cyber Attacks with Petri Nets
Bartosz Jasiul 1,*, Marcin Szpyrka 2 and Joanna Śliwa 1
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Abstract: The aim of this article is to present an approach to develop and verify a method
of formal modeling of cyber threats directed at computer systems. Moreover, the goal is
to prove that the method enables one to create models resembling the behavior of malware
that support the detection process of selected cyber attacks and facilitate the application
of countermeasures. The most common cyber threats targeting end users and terminals
are caused by malicious software, called malware. The malware detection process can
be performed either by matching their digital signatures or analyzing their behavioral
models. As the obfuscation techniques make the malware almost undetectable, the classic
signature-based anti-virus tools must be supported with behavioral analysis. The proposed
approach to modeling of malware behavior is based on colored Petri nets. This article is
addressed to cyber defense researchers, security architects and developers solving up-to-date
problems regarding the detection and prevention of advanced persistent threats.
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1. Introduction

According to the numerous cyber security reports, the number of cyber threats is increasing rapidly
from 23,680,646 in 2008 [1] to 5,188,740,554 in 2013 [2]. This is nowadays one of the most vexing
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problems in computer systems security [3]. At the end of 2013, Kaspersky Lab, the Russian producer
of anti-virus software, reported that it currently detects and blocks more than 315,000 new malicious
programs every day, a significant increase from 2012, when 200,000 malicious programs were detected
and blocked each day on average.

According to Nomura Research Institute annual report on cyber security trends, in 2012, 100% of
organizations had anti-virus products installed [4]. Despite this, according to this report, about 30% of
organizations are systematically infected by malware. The reason for this situation is not, as it might
be expected, the inappropriate update of operating systems and virus definition files, but the lack of all
signatures for existing and appearing threats.

A major group of malware is composed of existing (known) parts of malicious codes [5]. Regardless
of the fact that their installation packs are different, this make them similar in a way that they may
launch applications with the same features. This simplicity of malicious code development and the
effectiveness of obfuscation mechanisms [6,7] available for the attackers nowadays make them armed
with a powerful weapon.

Moreover, according to the study conducted in 2012 by the Verizon Research, Investigations,
Solutions, Knowledge (RISK) Team in cooperation with many national federal organizations, including
the Australian Federal Police, Irish Reporting and Information Security Service, and United States Secret
Service, the following findings were made [8]:

• 54% of malware took months to discover,

• 29% of malware took weeks to discover,

• 13% of malware took days to discover.

This report shows how important it is to introduce new techniques that speed up the process of
malware detection to hours. The authors of the report [4] indicate that anti-virus products should be
supported by malware behavioral analysis tools in order to detect those attacks for which signatures were
not established yet. An existing example of an application that uses behavioral analysis for advanced
persistent threat detection is Digital DNA by HBGary, which extends the capabilities of McAfee Total
Protection anti-virus [9]. The detailed technical specification of this solution has not been released for the
public yet. The product brochure reveals the information that multiple low level behaviors are identified
for every running program or binary. This leads to the conclusion that each application is observed from
a behavioral perspective. McAfee is proud that the solution allowed the detection during the last year of
more zero-day attacks than the previous five years combined. This indicates the scale of new malware
development and the efficacy of the behavioral approach.

2. Motivation

An overwhelming number of computer systems are connected to each other by a global network,
the Internet, which allows producing results beyond those achievable by the individual systems alone.
The outcomes of cooperative work and the accessibility of information are perceived and appreciated
probably by all of its users. The advantages of this technology are available, unfortunately, also for
hostile goals, which was highlighted in the Introduction section.
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Although awareness of necessary security applications seems to be common and the tools used
for that purpose are getting more and more advanced, the number of successful attacks targeted at
computer systems is growing [10]. They are mostly related to denial of offered services, gaining
access to or stealing private data, financial fraud, etc. [11,12]. Moreover, the evolution towards cloud
computing, increasing use of social networks, mobile and peer-to-peer networking technologies, which
are an intrinsic part of our daily routine, bring many conveniences to our personal life, business and
government, gives the possibility of using them as tools for cyber criminals [13] and a potential path of
malware propagation [14,15].

Cyber criminals are focused on finding a way to bypass security controls and gaining access into the
protected network for many reasons. These may be gathering sensitive data or money fraud. That is why
organizations, companies, governments and institutions, as well as ordinary citizens all over the world
are interested in the detection of all attempts of malicious actions targeting their computer networks and
single machines.

The success rate of the applied methods for malware detection depends on the reliability of the
malware models. Usually, they are based on the code signatures. Security controls (e.g., anti-virus
tools) might be unadjusted, because the signatures of new threats have not been identified yet. Hackers
often use existing parts of code in order to implement new types of malware. This allows one, in
turn, to quickly develop the signatures of new dangerous software. Therefore, the more signatures that
are deployed, the more malicious codes that are identified. On the other hand, one of the methods
of misleading the signature-based detection systems is code obfuscation [16], the aim of which is
generating, from already existing code, a new application that cannot be assessed yet as being risky
by security controls [17]. This technique is simple in application and potentially successful, so that also
successful countermeasures are necessary. One of the examples is to follow the behavior [18] of the
malicious software in order to identify it and eliminate it from the protected system.

In order to overcome the limitations of signature-based anti-virus tools, there are various modeling
methods of malware behavior proposed by the scientific community. As opposed to signature-based
techniques, which analyze the static contents of the binaries, behavior techniques are focused on run-time
events caused by those binaries observed on different levels (processor, operating system), which form
sequences of related actions—so-called patterns. It is very common that sensors focused on monitoring
system calls are used to identify the symptoms of malware behavior. From this vast amount of apparently
independent events, it is necessary to identify symptoms that match a unique pattern. This approach relies
heavily on the model of malware behavior that was used as the basis of a particular detection method.

In [19,20], we can find the analysis of both groups and sequences of system calls in the form of
n-gram models. These approaches investigate the diversity of system calls by verification of a large-scale
collection of system events that were related to the activities performed by particular hosts’ users.
N-gram models enable one to identify similarities among different types of malware; however, the
matching process is not strictly defined and may be implemented differently.

Another approach was proposed in [21], which describes an individual system call analysis that tracks
processor operations on the assembler code level on the basis of control flow graphs. The case study
presented was based on malware affecting web browsers and any loaded browser helper object. With
the use of this method, the authors were able to handle sensitive user information, such as the URLs that
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a user visits or the content of the web pages that are loaded in Microsoft Internet Explorer. This way,
a leakage of sensitive information outside the browser can be stopped.

Similarly to [21], a system call dependency graph [22] is a technique for extracting optimally
discriminative specifications, based on graph mining and concept analysis, which uniquely identifies
a class of programs. Such a discriminative specification technique scales to large classes of programs
due to probabilistic sampling of the set of events. This technique for mining behaviors by contrasting two
sets for malicious and benign programs relies on a precise representation of software behavior, which
could be unsuccessful for zero-day attacks constructed from existing parts of malware, which might
behave differently.

In [23], we can find an interesting proposal of the bounded feature space behavior modeling (BOFM)
framework for scalable malware detection. BOFM models the interactions among software (which can
be malware or benign) and security-critical OS resources in a scalable manner. Information collected
at run-time (e.g., based on API hooking) according to this model is then used by machine learning
algorithms to learn how to accurately classify software. This approach enables one to perform system
monitoring during the user’s regular interaction with the system. However firstly, the learning phase
needs to be performed. This approach may suffer from additional false positive and negative detection
rates depending on the learning set, as well as the learning process.

In [24] modeling of the propagation of email worms was proposed. The proposed model can precisely
present the repetitious spreading process caused by malicious software distributed as email attachments.
This method can be used to evaluate the infection process of newly-created malware, so called zero-day
attacks. It could be useful to alarm the users of some network environments (e.g., company, county,
region); however, it would not be sufficient for malware detection.

Some of the methods presented above describe only the model used to describe malware
behavior [20,23,24]; however, others focus more on the detection method [21,23]. They can detect
malware activities on the processor level [21] or the operating system calls [19] in run-time [23] or
in a controlled or emulated environment [24]. The main assumption taken for our work was that the
malware tracking tool needs to operate during the normal operation of the host machine on the basis of
events observed by the operating system monitor sensor. The model must also be able to resemble the
behavior of different kinds of malware (not focusing only on Internet browser spyware or e-mail worms)
and efficiently support the process of detection. It was also important to provide the possibility to use
a particular classifier that can improve the success rate of the detection process (minimizing the false
positive and false negative rates).

The aim of this article is to present an approach to the modeling and detection of malware behavior
with the use of formal models (classifiers) based on colored Petri nets (CP-nets [25,26]). We prove that
the method enables one to create models resembling the behavior of malware, and these models support
the detection of cyber threats directed at computer systems.
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3. CP-nets

Colored Petri nets form a discrete-event modeling language combining the capabilities of Petri
nets [27] with the capabilities of a high-level programming language. CP-nets provide graphical notation
typical for Petri nets, but net elements are described using the CPN ML programming language [25].

A non-hierarchical CP-net [25] is a nine-tuple CPN = (P, T,A,Σ, V, C,G,E, I), where:

(1) P is a finite set of places.

(2) T is a finite set of transitions, such that P ∩ T = ∅.

(3) A ⊆ (P × T ) ∪ (T × P ) is a set of directed arcs.

(4) Σ is a finite set of non-empty color sets.

(5) V is a finite set of typed variables, such that Type[v] ∈ Σ for all variables v ∈ V .

(6) C : P → Σ is a color set function.

(7) G : T → ExprV is a guard function, such that ∀t∈TType[G(t)] = Bool , where ExprV denotes the
set of expressions (possibly with free variables from set V ) provided by CPN ML.

(8) E : A → ExprV is an arc expression function, such that ∀a∈AType[E(a)] = C(p)MS , where p is
the place connected to the arc a and XMS denotes the set of multisets over set X .

(9) I : P → Expr∅ is an initialization function, such that ∀p∈PType[I(p)] = C(p)MS .

A marking (state) of a CP-net is a function M defined on the set of places P , such that
∀p∈PM(p) ∈ C(p)MS . The initial marking is obtained by evaluating the initialization expressions.

An execution of a CP-net is described by means of an occurrence sequence. It specifies the markings
that are reached and the transitions that occurred. To make it possible to evaluate arc expressions, it
is necessary to assign (bind) some values to free variables occurring in arc expressions on the arcs
connected to the transition and in the transition guard. A transition is enabled (ready to occur) if it is
possible to construct such a binding that the guard evaluates as true and each of the arc expressions
evaluate as tokens, which are present on the corresponding input places. An occurrence of a transition
t removes tokens from input places of t and adds tokens to its output places. The multisets of
removed/added tokens are specified by the expressions of the corresponding arcs.

Hierarchical CP-nets are composed of non-hierarchical modules. Substitution transitions and fusion
places are used to combine such modules. The former idea allows the user to refine a transition and its
surrounding arcs into a more complex net, which usually gives a more precise and detailed description
of the activity represented by the substitution transition. A fusion of places allows users to specify a set
of places that should be considered as a single one. This means that they all represent a single conceptual
place, but are drawn as separate individual places (e.g., for clarity reasons). For more details, see [25].
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4. CP-net Malware Models

Figure 1.

Malware executes functions and operations on the same system resources as legitimate applications.
Therefore, it is possible to identify patterns that can be used as models of software behavior. These
are potentially: (i) operations on files; (ii) operations on the system registry; (iii) run processes and
applications; (iv) communication with specific IP addresses; and (v) communication with domains.
These actions can be malicious and performed among many actually harmless ones.

The malware detection takes as an input a set of suspicious events received from the process’ hooking
engine, so-called PRONTOlogy, developed by the authors of this article [28,29]. This engine is based on
ontology reasoning [30] used for the purpose of filtering single malicious incidents among hundred of
thousands of regular ones. These single events are passed on to the PRONTOnet engine, the operation
of which is based on formal CP-net malware models, for further investigation.

The PRONTOnet uses formal malware models and performs the detection process by passing
(moving) through particular places in the model, using the CP-net vocabulary and characteristics
described above. CP-nets are one of the most widespread classes of Petri nets. They provide an easy
to understand graphical notation similar to other commonly-used graphical languages, e.g., some UML
diagrams. The description language is also easy to learn. It is reduced to a small number of statements
typical for high-level programming languages. The semantics of CP-nets is formally defined, and a reach
set of analysis methods for CP-nets is accessible. In comparison with other formals methods, CP-nets
equally describe the states and actions of the modeled system. Depending on the needs, we can focus on
the former or the latter of these aspects. Moreover, the mechanisms of the hierarchical models’ design
enable users to construct complex models and/or to swap some parts of a model if necessary.

Colored Petri net (CP-net) model of PRONTOnet : Page hierarchy graph.

The hierarchical structure of the CP-net model defined by the authors is shown in Figure 1. The
detection process progresses on the basis of the levels of the hierarchy. The primary module of the CP-net
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model, representing the PRONTOnet threat tracking tool, is depicted in Figure 2. On the left-hand side
of this figure, there is a column of places, marked with ellipses, storing tokens that represent particular
assets that might be affected by malware: F, a place storing tokens indicating files; R, registry entries;
P, processes; D, domains; IP, IP addresses that the malware may communicate with. Markings of these
places represent tracked symptoms. The second column in Figure 2 is composed of substitute transitions
that are related to the acquisition process depicted in Figure 3. The next column is made up of places
indicating particular assets affected by malware activated in the monitored system. Markings of these
places represent observed symptoms. They are processed by a substitute transition called Verify, which
is aimed at reasoning if the system is infected by a certain malware type. As a consequence, the place
RESULT is marked with a vector informing about particular malware type and related symptoms.

Figure 2. CP-net model of PRONTOnet: Primary module.
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The CP-net modeling language assumes the application of particular elements presented in Section 3.
They have been also indicated in Figure 2, called the primary module. For the purpose of malware
modeling, we have defined color types and inscriptions as presented in the following listing:

colset S = String;

colset I = Integer;

colset Symptoms = List S;

colset V = Product I * S * Symptoms;

Type S is a string. In this way, particular assets are described by variables f, r, p, d, ip of type S, e.g.,
file C:\[WINDIR]\System32\svchost.exe or IP address 66.232.126.195. Type I is an integer
and is used as threat identity number, and type Symptoms is a list of strings describing assets suspected
to be infected by malware. Type V is a product that indicates the threat identity number, the name of the
threat and a list of symptoms that were used for identifying which attack was executed in the system.

In Figure 3, the symptom acquisition process and co-operation with the PRONTOlogy module is
presented. The Symptom place is an input/output port that indicates appropriate places F, R, P, D and
IP from the higher level module (Figure 2). In the acquisition module, tokens that represent filtered
suspicious activities identified by the PRONTOlogy are passed to the VSymptom place if the same
token exists at the Symptom place. Identified suspicious actions mark the VSymptom place for further
processing by the Verify transition. Marking of the Symptom place contains all tracked elements of the
monitored system, e.g., all IP addresses with which the system may communicate and from which it
downloads malicious software. Transition Symptom_detected is developed in order to test the existence
of the appropriate token in the Symptom place in case the Trigger place is marked. If the compared
tokens are different, the transition does not react. The conformity of tokens is required by the guard
[x = t]. The CP-net model of the acquisition module takes into account the situation when more than
one malware type has the same individual symptoms. In this case, marking of the Symptom place is not
reduced, while the Symptom_detected transition is enabled.

This module shows an important role of the PRONTOlogy [28,29] in the identification of suspicious
events flowing from the system calls’ monitor. This identification process is based on the set of
rules describing suspicious activities using the same semantics as CP-nets (color sets, places and their
appropriate markings), e.g., modification of the registry by a particular process, but with the use of
Web Ontology Language (OWL) and Semantic Web Rule Language (SWRL). The rules enable one to
recognize single symptoms and are created by the malware analyst after a deep analysis of particular
malware behavior. This process is necessary for sifting through thousands of events flowing from the
sensor, increasing the efficiency of the PRONTOnet. The rules are generic and enable one to detect
obfuscated malware and newly created zero-day attacks that resemble, at some point, the behavior
of existing malicious codes. The identified suspicious actions are passed through to the PRONTOnet
module, which now performs contextual analysis on the basis of the events’ sequences.

The verification module is presented in Figure 4. It must be noted that substitute transition Verify in the
primary module represents multiple transitions designed for the identification of various malware types.
This indicates that characteristic marking of V places causes enabling of the transition appropriate for
particular malware. This triggers the verification process. An exemplary virus detection for the chosen
marking is shown in Figure 5, which presents the detection of malware called Virut [31].
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Figure 4. CP-net: verification module.
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In the presented example, assuming the appearance of the appropriate marking, transition Virut is
enabled, which, as a consequence, leads to receiving vector v informing about detection of the Virut
malware. The structure of vector v is as follows:

1’ 1 | Virut | vrt7.tmp, HKLM\...\Security, winlogon, svchost,

zief.pl, setdoc.cn, 209.205.196.18, 94.247.2.38.
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The CP-net models presented in this section allow one to easily update the symptoms of a new
attack by changing the initial marking of places. Every time a new malware model is entered into
the PRONTOnet, the appropriate actualization of places’ markings must be performed.

It is also worth emphasizing that the detection of malware is not limited only to the depicted resources.
PRONTOnet may be also used for the identification of exploits through the analysis of network traffic
and system statistics [32]. If some resource is identified as useful for malware detection, the primary
module needs only to be updated with additional places and transitions.

5. Performed Experiments: Verification of the Solution

The presented malware modeling based on CP-nets is to support the detection of malicious software.
That is why this chapter presents the verification of the proposed method in terms of the possibility
of its application in malicious activity detection and categorization into a specific malware type. The
verification process based on a case study has been divided into the following steps:

• Evaluation of the malware modeling process in terms of its applicability and ease of use. An
exemplary malware is presented as a CP-net model with the use of software developed for the
purpose of verification.

• System data acquisition. The simulated malicious software modifies the system, files, registry and
connects to its command-and-control (C&C) servers. Moreover, it executes harmful activities. All
of the observed actions, including both legitimate one and those made by malware, have been
registered.

• Malware detection experiment. Suspicious activities are assigned to malware CP-net models. The
detection mechanism reveals which attack was detected. The vector containing information about
detected suspicious activities and their similarity to the modeled malware is presented. For the
purpose of this article, we describe one scenario presenting the possible detection of Virut, the
virus that infects executable files and opens a back door to the compromised computer [31].

5.1. Evaluation of Cyber Attack CP-net Model Construction

In order to define the requirements for cyber attack models according to [25], the following questions
need to be answered: What is the purpose? What do we want to learn about the system by making this
kind of model? What kinds of properties are we interested in investigating?

Without initially answering these questions in some detail, it is impossible to make a good model,
and we shall be unable to decide what should be included in the model and what can be abstracted
away without compromising the correctness of the conclusions that will be drawn from investigating the
model. Finding the appropriate abstraction level at different points in the development of the system is
one of the arts of modeling. The purpose of the modeling of cyber attacks is to understand their nature
and behavior in the infected system. Obfuscation methods [33] allow attackers to bypass signature-based
security controls, although their activity in the system still has the same nature. Thus, the model of
malware is a reflection of the potential attack that may appear. Secondly, modeling of threats should
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allow us to observe the modification of malicious activities and to find new threats, so-called zero-day
attacks. The similarity to the model—the detection of particular characteristic actions that have been
taken from other existing malware—leads to raising an alarm that suspicious activity is detected. Thirdly,
and finally, we need to know the value of the risk that our system might be infected and, in case of
a successful attack, what level of damage to the system would be observed. The model must also provide
the possibility to track the behavior of malware and, on the basis of the observation of different events,
decide about the existence of particular malware in the protected system.

The model was constructed in such a way that it reflects all of the computer assets taking part in
malware execution, such as the file system, registry, executed processes, IP addresses and the domain
names to which the system connects. They are modeled as places in the CP-net model. Thus,
set P is formed with the objects of the protected system involved in the detection of the harmful
malware activities:

P = PProcess ∪ PIP_address ∪ PDomain ∪ PFile ∪ PRegistry ∪ PSensor

Possible transition set T is composed of any actions realized on the system assets:
T = {Execute, Create,Modify , Delete, Close, Run,Terminate,Connect , Query,Download,

Read,Open,Other}
Color set Σ over places P is to reflect different types of assets, e.g., the address of a web page, the
location of files, their handlers after execution, sent data, IP address or the domain name of C&C.

Σ = ΣProcess ∪ ΣIP_address ∪ ΣFile ∪ ΣDomain ∪ ΣRegistry

Initial marking M0 of places P allows one to indicate particular assets that must be tracked by the
proposed method in order to reflect different events’ characteristics, i.e., a particular file name, the file
path, the registry entry, etc. In the proposed model, M0 is as follows:

M0 = MProcess ∪MIP_address ∪MFile ∪MDomain ∪MRegistry, where:

MP = {svchosts, rundll32, csrsc, ...} indicate particular processes,

MIP_address = {209.205.196.18, 66.232.126.195, 94.247.2.38234, ...}, IP addresses,

MF = {vrt7.tmp, ntdll.dll, 8.tmp, 9.tmp, ...}, files,

MD = {horobl.cn, setdoc.cn, zief .pl , irc.zief .pl , proxim.ircgalaxy.pl, ...}, domains,

MR = {HKLM/.../F irewallPolicy,HKU/.../UpdateHost , ...}, registry entries.

Set A is a set of directed arcs that connect places to transitions and transitions to places:
A ⊆ (P × T ) ∪ (T × P ). They enable one to reflect the sequence of actions on system assets.

For the purpose of particular malware modeling and storing their specifications, a dedicated
application, called the CP-net malware modeling tool, was developed (CPN MM).

Let us focus on the modeling of cyber attacks with the use of the CPN MM tool. As an example,
showing the model’s expressiveness, the Virut malware [31] has been chosen. The first window of the
CPN MM is shown in Figure 6. It presents the list of modeled cyber attacks and Virut malware as the
last one. Whenever an expert wants to model a new cyber attack, he needs to choose the “Add” button
and fill in data, as presented in Figure 7. Symptoms of particular malware are edited in the window
presented in Figure 8. It shows a drag and drop tool, which allows one to add subsequent places to the
model easily.
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Figure 6. CP-net malware modeling tool: First window.

Figure 7. Malware editor window of the CP-net malware modeling tool (CPN MM).



Entropy 2014, 16 6614

Figure 8. Editor for malware symptoms.

5.2. Data Acquisition

The verification was made with the use of the most popular target of cyber infections, the Microsoft
Windows operating system. The authors of this article do not claim that this is the most vulnerable
system. In the authors’ opinion, the reason for cyber attacks on the Windows operating system is the
popularity of the system and the potentially high gain from the conducted attacks. Microsoft products
are very popular, which makes them attractive for cyber criminals.

For the observation of activities, applications, services and network connections in the native
Microsoft Windows 7 operating system environment, the Sysinternals Suite utility package [34] was
used. The Sysinternals Suite is a set of over 70 advanced diagnostic and troubleshooting programs
for the Windows platform [35]. The majority of events were observed with the Process Monitor
utility [36], a part of the Sysinternals Suite. The Process Monitor is an advanced monitoring application
for Windows that registers events that relate to the file system, registry and process activity in real time.
It enables monitoring event properties, such as session IDs, user names, process information, thread
stacks, simultaneous logging to a file, etc. It is a powerful utility that supports the PRONTOlogy module
with detailed information on the activities performed in the protected system.

For the purpose of data acquisition, it is also possible to use API hooking tools [37,38]; however, they
inject themselves (like viruses) into the processes; thus, they can affect the results of the verification. In
the case of the utilization of the PRONTO malware hunting tool for the detection of network attacks,
various network utilities, e.g., SNORT, ARAKIS, iptables, should also be used.

Having stored CP-net models of cyber attacks in the database, it is possible to go further with the
experiment into the malware detection phase. Generally, the aim of such experiments is not only to
identify existing malware that was obfuscated, but also zero-day attacks that have, to some degree,
similar behavior to the already identified one. In this article, we present only one scenario with the
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detection of the exemplary Virut malware. It is however possible, with an appropriate construction of
the verification module, to detect zero-day attacks that are composed of several activities characteristic
for already known attacks.

Listing 1. Example of one regular and three suspicious events acquired in the first scenario.
<event>

<ProcessIndex>14340</ProcessIndex>

<Time_of_Day>17:20:21,1001813</Time_of_Day>

<Process_Name>WINLOGON.EXE</Process_Name>

<PID>2728</PID>

<Operation>ReadFile</Operation>

<Path>C:\Windows\Temp\vrt7.tmp</Path>

<Result>SUCCESS</Result>

<Detail>Offset: 734 720, Length: 16 384, Priority: Normal</Detail>

</event>

<event>

<ProcessIndex>14560</ProcessIndex>

<Time_of_Day>17:22:25,1104786</Time_of_Day>

<Process_Name>ThreatProc.exe</Process_Name>

<PID>6043</PID>

<Operation>RegSetValueEx</Operation>

<Path>HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Run\

Windows System Monitor: "C:\Windows\system\winrsc.exe"

</Path>

<Result>SUCCESS</Result>

<Detail>Type: REG_SZ, Length: 24, Data: SimSun-ExtB</Detail>

</event>

<event>

<ProcessIndex>16640</ProcessIndex>

<Time_of_Day>17:22:36,2548113</Time_of_Day>

<Process_Name>WINWORD.EXE</Process_Name>

<PID>6733</PID>

<Operation>RegQueryKey</Operation>

<Path>HKLM</Path>

<Result>SUCCESS</Result>

<Detail>Query: HandleTags, HandleTags: 0x0</Detail>

</event>

<event>

<ProcessIndex>19240</ProcessIndex>

<Time_of_Day>17:47:02,1294174</Time_of_Day>

<Process_Name>mmirc.exe</Process_Name>

<PID>12188</PID>

<Operation>TCP Connect</Operation>

<Path>MalwareTest1-VAIO:55052 -> irc.zief.pl:6667</Path>

<Result>SUCCESS</Result>

<Event_Class>Network</Event_Class>

<Image_Path>C:\Windows\Temp\mmirc.exe</Image_Path>

<Session>1</Session>

</event>

5.3. Malware Detection Scenario

Within one minute of Windows 7 OS operation, thousands or even hundreds of thousands of single
events may be observed. The report from the Process Monitor includes every action that took place
in the system. It includes both regular and suspicious activities. For the purpose of verification and,
in particular, the generation of these unwanted activities, different machines were infected by various
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malware. At the same time, many legitimate programs were executed on these machines in order to
simulate legitimate user activity. This allowed us to generate background regular events. The Virut
scenario shows the steps of the PRONTO operation in terms of malware detection on the basis of the
CP-net model.

5.3.1. Virut Scenario

The data acquisition phase allows one to gather information about events collected by the Process
Monitor. Obviously, the whole file with captured events will not be presented in this chapter, although
an exemplary excerpt from it is presented in Listing 1. The events presented in Listing 1 are processed,
and XML data is lifted to the semantic metadata [39]. Based on this example, the following instances
are inserted into the ontology model (as ABox entries):
for the first event:
http://wil.waw.pl/secor/PRONTOlogy.owl#Event_1; an instance of the event class

http://wil.waw.pl/secor/PRONTOlogy.owl#eventName(http://wil.waw.pl/

secor/PRONTOlogy.owl#Event_1, "winlogon_read_vrt.7")

http://wil.waw.pl/secor/PRONTOlogy.owl#ResProcess_2728

http://wil.waw.pl/secor/PRONTOlogy.owl#resourceName(http://wil.waw.pl/

secor/PRONTOlogy.owl#ResProcess_2728, "winlogon.exe")

http://wil.waw.pl/secor/PRONTOlogy.owl#ResFile_1

http://wil.waw.pl/secor/PRONTOlogy.owl#resourceName(http://wil.waw.pl/

secor/PRONTOlogy.owl#ResFile_1, "vrt7.tmp")

http://wil.waw.pl/secor/PRONTOlogy.owl#read(http://wil.waw.pl/secor/

PRONTOlogy.owl#ResProcess_2728, http://wil.waw.pl/secor/

PRONTOlogy.owl#ResFile_1)

http://wil.waw.pl/secor/PRONTOlogy.owl#hasResource(http://wil.waw.pl/

secor/PRONTOlogy.owl#Event_1, http://wil.waw.pl/secor/PRONTOlogy.owl

#ResProcess_2728)

for the second event:
http://wil.waw.pl/secor/PRONTOlogy.owl#Event_2; an instance of the event class

http://wil.waw.pl/secor/PRONTOlogy.owl#eventName(http://wil.waw.pl/secor/

PRONTOlogy.owl#Event_2, "ThreadProc_modify_Windows_System_Monitor")

http://wil.waw.pl/secor/PRONTOlogy.owl#ResProcess_6043

http://wil.waw.pl/secor/PRONTOlogy.owl#resourceName(http://wil.waw.pl/

secor/PRONTOlogy.owl#ResProcess_6043, "ThreatProc.exe")

http://wil.waw.pl/secor/PRONTOlogy.owl#ResRegistry_1

http://wil.waw.pl/secor/PRONTOlogy.owl#resourceName(http://wil.waw.pl/

secor/PRONTOlogy.owl#ResRegistry_1, "HKEY_LOCAL_MACHINE\SOFTWARE\

Microsoft\Windows\CurrentVersion\Run\Windows System Monitor:

C:\Windows\system\winrsc.exe")

http://wil.waw.pl/secor/PRONTOlogy.owl#modify(http://wil.waw.pl/secor/

PRONTOlogy.owl#ResProcess_6043, http://wil.waw.pl/secor/

PRONTOlogy.owl#ResRegistry_1)

http://wil.waw.pl/secor/PRONTOlogy.owl#hasResource(http://wil.waw.pl/

secor/PRONTOlogy.owl#Event_2, http://wil.waw.pl/secor/PRONTOlogy.owl

#ResProcess_6043)

for the third event:
http://wil.waw.pl/secor/PRONTOlogy.owl#Event_3; an instance of the event class

http://wil.waw.pl/secor/PRONTOlogy.owl#eventName(http://wil.waw.pl/secor/

PRONTOlogy.owl#Event_3, "Winword_read_HKLM")

http://wil.waw.pl/secor/PRONTOlogy.owl#ResProcess_6733

http://wil.waw.pl/secor/PRONTOlogy.owl#resourceName(http://wil.waw.pl/

secor/PRONTOlogy.owl#ResProcess_6733, "Winword.exe")

http://wil.waw.pl/secor/PRONTOlogy.owl#ResRegistry_2
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http://wil.waw.pl/secor/PRONTOlogy.owl#resourceName(http://wil.waw.pl/

secor/PRONTOlogy.owl#ResRegistry_2, "HKLM")

http://wil.waw.pl/secor/PRONTOlogy.owl#read(http://wil.waw.pl/secor/

PRONTOlogy.owl#ResProcess_6733, http://wil.waw.pl/secor/

PRONTOlogy.owl#ResRegistry_2)

http://wil.waw.pl/secor/PRONTOlogy.owl#hasResource(http://wil.waw.pl/

secor/PRONTOlogy.owl#Event_3, http://wil.waw.pl/secor/PRONTOlogy.owl

#ResProcess_6733)

for the fourth event:
http://wil.waw.pl/secor/PRONTOlogy.owl#Event_4; an instance of the event class

http://wil.waw.pl/secor/PRONTOlogy.owl#eventName(http://wil.waw.pl/secor/

PRONTOlogy.owl#Event_4, "mmirc_connect_irc_zief_pl")

http://wil.waw.pl/secor/PRONTOlogy.owl#ResProcess_12188

http://wil.waw.pl/secor/PRONTOlogy.owl#resourceName(http://wil.waw.pl/

secor/PRONTOlogy.owl#ResProcess_12188, "mmirc.exe")

http://wil.waw.pl/secor/PRONTOlogy.owl#ResDomain_1

http://wil.waw.pl/secor/PRONTOlogy.owl#resourceName(http://wil.waw.pl/

secor/PRONTOlogy.owl#ResDomain_1, "irc.zief.pl")

http://wil.waw.pl/secor/PRONTOlogy.owl#connect(http://wil.waw.pl/secor/

PRONTOlogy.owl#ResProcess_12188, http://wil.waw.pl/secor/

PRONTOlogy.owl#ResDomain_1)

http://wil.waw.pl/secor/PRONTOlogy.owl#hasResource(http://wil.waw.pl/

secor/PRONTOlogy.owl#Event_4, http://wil.waw.pl/secor/PRONTOlogy.owl

#ResProcess_12188)

The acquisition module that uses the PRONTOlogy filters out the events gathered with the use of a set
of rules [28]. The rules that are valid in the presented scenario allow one to infer that three of the above
events are suspicious. On the basis of the rules, the following facts are inferred:
http://wil.waw.pl/secor/PRONTOlogy.owl#Place_1; a member of the file class

http://wil.waw.pl/secor/PRONTOlogy.owl#hasPlace(http://wil.waw.pl/secor/

PRONTOlogy.owl#Event_1, http://wil.waw.pl/secor/ PRONTOlogy.owl#Place_1).

http://wil.waw.pl/secor/PRONTOlogy.owl#hasColour(http://wil.waw.pl/secor/

PRONTOlogy.owl#Place_1, http://wil.waw.pl/secor/PRONTOlogy.owl#ResFile_1).

http://wil.waw.pl/secor/PRONTOlogy.owl#Place_2; a member of the registry class

http://wil.waw.pl/secor/PRONTOlogy.owl#hasPlace(http://wil.waw.pl/secor/

PRONTOlogy.owl#Event_2, http://wil.waw.pl/secor/ PRONTOlogy.owl#Place_2).

http://wil.waw.pl/secor/PRONTOlogy.owl#hasColour(http://wil.waw.pl/secor/

PRONTOlogy.owl#Place_2, http://wil.waw.pl/secor/PRONTOlogy.owl#ResRegistry_1).

http://wil.waw.pl/secor/PRONTOlogy.owl#Place_3; a member of the domain class

http://wil.waw.pl/secor/PRONTOlogy.owl#hasPlace(http://wil.waw.pl/secor/

PRONTOlogy.owl#Event_2, http://wil.waw.pl/secor/ PRONTOlogy.owl#Place_2).

http://wil.waw.pl/secor/PRONTOlogy.owl#hasColour(http://wil.waw.pl/secor/

PRONTOlogy.owl#Place_2, http://wil.waw.pl/secor/PRONTOlogy.owl#ResDomain_1).

Events 1, 2 and 4 (see Listing 1) have been identified as suspicious, whereas Event 3 as regular
system activity.

The PRONTOlogy module passes forward to the PRONTOnet module only information about
suspicious events in the form of places and appropriate tokens assigned to them (with the use of the
hasColour object property). It takes place in the acquisition module, as presented in Figure 3. Then,
in the PRONTOnet, these tokens are passed to the verification module where marking Ma of places is:

Ma = MFile ∪MDomain ∪MRegistry, where:

• MFile={vrt7.tmp},
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• MDomain={irc.zief.pl},

• MRegistry = {HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\
Run\Windows System Monitor: "C:\Windows\system\winrsc.exe"}.

For the machine described in this scenario, the detection realized with the use of CPN MM and
marking Ma allowed for identifying the Virut attack. The result vector is as follows:

1’ 1 | Virut | vrt7.tmp, irc.zief.pl, Windows System Monitor:

"C:\Windows\system\winrsc.exe"

The detection of the Virut malware is shown in Figure 9.

Figure 9. Result of the detection of the Virut malware.

Realization of this scenario allowed us to prove that the ontology model, as well as the applied
reasoning rules [40] were successfully adapted to the detection of single malicious incidents. Then, these
incidents were collected and compared with the CP-net models created with the use of the CPN MM tool.
As a result, the Virut malware has been detected.

The CP-net model described in Section 4 allowed us to reflect all crucial system resources that can be
affected by malware. Therefore, it was possible to identify operations performed by an obfuscated code.

6. Conclusions

The article tackles the problem of malware modeling for the purpose of the detection process. It
proposes a new approach to behavioral malicious code analysis based on CP-net models in order to
inform security stakeholders about suspicious activities observed in the monitored system. This should
lead to faster and more appropriate decisions that mitigate the negative results of the conducted cyber
attack and, as a consequence, the development of new signatures to avoid similar threats.

The malware behavior model used in the PRONTO hunting tool has been formally specified. It
consists of a hierarchical CP-net model allowing for the detection of not only well-known cyber attacks,
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but also zero-day attacks constructed from the existing parts of malicious codes. Moreover, the method
is resilient to the very popular obfuscation of the malicious code. It precisely detects single or groups of
suspicious activities caused by the malware. Our approach is focused both on the formal modeling, as
well as the success rate of the detection process. It is also generic in terms of the detection of multiple
types of malware in opposition to the methods focused on some specific attacks (e.g., on e-mails,
web browsers). The proposed method tracks and traces events related to various system assets, like
files, system registry, processes, communicated domains or IP-addresses. This list could be extended
if needed.

The limitation of our method can be the lack of the possibility to use it in virtualized machines,
so-called sandboxes. The reason is the fact that the vast majority of malware is able to detect the
virtualized environment and does not activate itself in such an environment. In order to overcome this
inconvenience, we are working on a honeypot that could more easily get infected by malware and enable
us to identify suspicious or harmful activities characteristic of this particular malware, as well as to
perform an analysis of its code in the controlled environment.

The CP-net-based malware model defines behavioral patterns that express software activities on the
operating system. The detection method that uses the model moves through the places in the CP-net
on the basis of the interaction with sensors that record sequences of activities and verify their potential
harmfulness (the acquisition phase) and their analysis (the detection phase).

It has been shown that the proposed approach to modeling and the resulting CP-net cyber
attack models constructed with the use of the CP-net malware modeling tool allow one to identify
known malware.

Due to the limited size of this article, it is not possible to report all of the experiments that have been
performed; however, it is also possible to detect zero-day attacks, the code of which has been obfuscated.
PRONTOnet is able to pass on the alarms about the observed threat and the symptoms that indicate the
existence of particular malware.

The proposed method of malware modeling and its detection is planned to be adapted at least in the
Federated Cyber Defence System being developed in Poland; however, its applicability is much wider.
It can be used in honeypots spread in the monitored system in the form of so-called sandboxes without
any or with vulnerable security controls in order to trace and track unwanted activities generated by
the software, as well as the users of the system. The advantage of the method should be also noticed
by companies utilizing only signature-based anti-virus applications. In particular, PRONTO fulfills
the current need to shorten the time of malware detection from the moment it has established itself
in the system. As mentioned in the introductory chapter of this article, over 50% of malware was
detected after months and about 30% after weeks of infection. Before being identified, cyber attacks
can cause irreversible losses and damage in the system. The alarm raised by PRONTO and the in-time
introduction of appropriate security measures and malware removal can mitigate the risk of potential
losses. Moreover, faster detection of new malware should lead to faster delivery of appropriate signatures
constructed on the basis of static code analysis, which is a current need of companies producing
anti-virus applications.
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17. Szwed, P.; Skrzyński, P. A new lightweight method for security risk assessment based on fuzzy
cognitive maps. Int. J. Appl. Math. Comput. Sci. 2014, 24, 213–225.

18. Ihm, H. Mining Consumer Attitude and Behavior. J. Converg. 2013, 4, 29–35.
19. Canali, D.; Lanzi, A.; Balzarotti, D.; Kruegel, C.; Christodorescu, M.; Kirda, E. A Quantitative

Study of Accuracy in System Call-based Malware Detection. In Proceedings of the 2012
International Symposium on Software Testing and Analysis, Minneapolis, MN, USA, 16–20 July
2012; pp. 122–132.

20. Lanzi, A.; Balzarotti, D.; Kruegel, C.; Christodorescu, M.; Kirda, E. AccessMiner: Using
System-centric Models for Malware Protection. In Proceedings of the 17th ACM Conference on
Computer and Communications Security, Chicago, IL, USA, 4–8 October 2010; pp. 399–412.

21. Egele, M.; Kruegel, C.; Kirda, E.; Yin, H. Dynamic Spyware Analysis. In Proceedings of
the 2007 Usenix Annual Conference (Usenix ’07), Santa Clara, CA, USA, 17–22 June 2007;
pp. 233–246.

22. Fredrikson, M.; Jha, S.; Christodorescu, M.; Sailer, R.; Yan, X. Synthesizing Near-Optimal
Malware Specifications from Suspicious Behaviors. In Proceedings of the 2010 IEEE
Symposium on Security and Privacy (SP ’10), Oakland, CA, USA, 16–19 May 2010; pp. 45–60.

23. Chandramohan, M.; Tan, H.B.K.; Briand, L.; Shar, L.K.; Padmanabhuni, B. A scalable approach
for malware detection through bounded feature space behavior modeling. In Proceedings of
2013 IEEE/ACM 28th International Conference on Automated Software Engineering (ASE),
Palo Alto, CA, USA, 11–15 November 2013; pp. 312–322.

24. Wen, S.; Zhou, W.; Zhang, J.; Xiang, Y.; Zhou, W.; Jia, W.; Zou, C. Modeling and Analysis on
the Propagation Dynamics of Modern Email Malware. IEEE Trans. Dependable Secur. Comput.
2014, 11, 361–374.



Entropy 2014, 16 6622

25. Jensen, K.; Kristensen, L. Coloured Petri Nets: Modelling and Validation of Concurrent Systems,
1st ed.; Springer-Verlag: Berlin/Heidelberg, Germany, 2009.

26. Szpyrka, M. Analysis of VME-Bus communication protocol—RTCP-net approach. Real-Time
Syst. 2007, 35, 91–108.

27. Petri, C.A. Communication with Automata; Technical report, RADC-TR-65-377; Griffiss Air
Force Base: New York, NY, USA, 1966.
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