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Abstract 

Collusion-resistant fingerprinting paradigm seems to be a practical solution to the piracy problem as it allows media owners 
to detect any unauthorized copy and trace it back to the dishonest users. Despite the billionaire losses in the music industry, 
most of the collusion-resistant fingerprinting systems are devoted to digital images and very few to audio signals. In this 
paper, state-of-the-art collusion-resistant fingerprinting ideas are extended to audio signals and the corresponding 
parameters and operation conditions are proposed. Moreover, in order to carry out fingerprint detection using just a 
fraction of the pirate audio clip, block-based embedding and its corresponding detector is proposed. Extensive simulations 
show the robustness of the proposed system against average collusion attack. Moreover, by using an efficient Fast Fourier 
Transform core and standard computer machines it is shown that the proposed system is suitable for real-world scenarios. 
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Introduction 

In the Information Technology era, expansion of the Internet 
service together with the rapid advance of high capacity storage 
systems facilitated the fast and perfect copy of digital content. 
However, at the same time the use of these technologies causes 
serious problems, such as unauthorized copying and distribution of 
digital materials, [1]. Conventional cryptography systems encrypt 
digital data during its transmission and permit only authorized 
person to decrypt the encrypted data, nevertheless, once such data 
are decrypted they are totally vulnerable to illegal copying and 
distribution. One possible solution to this problem is the 
fingerprinting paradigm, where, a unique signature (which 
identifies to the legal user) known as a digital fingerprint is hidden 
using a watermarking technique into the content previously to 
distribution. Watermarking has several applications such as: 
ownership proof [2], secret communications [3], bio-security 
[4,5], etc. Digital fingerprinting, which is also a watermarking 
application, has the capacity of identifying illegal users by 
extracting the fingerprint of a suspicious copy. A typical attack 
in fingerprinting systems is the collusion attack, where a group of 
users combine their copies in order to remove the original 
fingerprint. If a sufficient number of copies are combined, the 
noise produced by the collusion attack can disable/confuse the 
fingerprint detector and prevent the content owner from 
identifying the illegal users. Although several linear and nonlinear 
operations can be utilized for a collusion attack, it has been shown 
that the worst one is the linear averaging [6]. Therefore, it is 
necessary to design collusion-resistant fingerprints that can identify 
the greatest number of colluders involved in a pirate copy. 

Collusion-resistant fingerprint codes have been proposed as a 
solution to the collusion attack [6–9]. Theoretical results for 

collusion-resistant fingerprint codes have shown interesting prop

erties against collusion attacks, however, in practical sceneries their 
performance needs further research as these can be sensible to 
other kinds of attacks, [9]. 

On the other hand, Spread Spectrum (SS) modulation is a 
watermarking technique that has shown to be remarkably robust 
to several attacks, collusion included, [10–13]; therefore, it has 
been frequently utilized in fingerprinting systems [14–16]. The 
main drawback of fingerprinting schemes based in spread 
spectrum modulation is their high computational complexity as 
the number of correlations performed is proportional to the 
number of possible users. A users grouping approach was 
proposed in [17]. That idea is based on the consideration of 
colluders being more likely to have similar geographical area and 
interests with each other. Users are grouped according to common 
conditions between them. When a suspicious copy is identified, the 
first search is about the group IDs and then for user’ IDs. The 
computational complexity is reduced, due to the colluders search is 
carried out in a tree fashion, [17]. 

In [18], the use of PN-modulated Discrete Cosine Transform 
(DCT) basis as fingerprints for digital images is proposed. The 
DCT operation can be represented as a multiplication between the 
input vector and one matrix conformed by the DCT basis. That 
multiplication is equivalent to correlations between the input 
vector and each column of the DCT matrix. Therefore, a fast 
DCT algorithm reduces the computational complexity of corre

lations needed in the IDs detection to the logarithmic scale. The 
fingerprint is formed by the sum of two PN-modulated DCT basis, 
one for the group ID and the other for the user ID. In the 
detection stage, firstly the groups to which colluders belong are 
detected, and then colluders are detected for each of them. In [19] 
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the interference due to colluder fingerprints is removed and 
performance of the system in [18] is improved drastically. 

The music piracy produces large monetary losses around the 
world [20,21], therefore, a tool that helps to mitigate the music 
piracy is mandatory. However, most of the reported collusion-

resistant fingerprinting schemes are devoted to digital images 
[7,8,16,18,19,22,23] and only very few are validated with audio 
signals [24]. This paper is about collusion-resistant audio 
fingerprinting. A collusion-resistant audio fingerprinting system 
based on some of the ideas developed for digital images in [18,19] 
is proposed. Instead of using the full signal as [18,19] a block-

based fingerprint embedding strategy is followed and the 
corresponding detector is derived. In this paper, the Modulated 
Complex Lapped Transform (MCLT) domain is utilized as 
fingerprint channel due to no block-artifact property in audio 
watermarking systems [11,25–28]. 

Related Work 
Work reported in [24] claims to be able to detect 80 colluders in 

a pirate audio clip. However, that system seems to be not suitable 
for real world scenarios. One weakness is about construction of 
component vector which is carried out using two audio channels in 
the Fourier domain. Due to a trigonometric function (inverse 
tangent) is involved in this stage, a simple attack like sign inversion 
in one audio channel prevents the correct ID detection as 
multiplication by 21 is equivalent to a phase shift by p radians. 
Moreover, if an audio channel is scaled (volume gain) the relation 
between both channels will be different to the original and the 
detection will fail. Detector performance after lossy compression, 
such as MP3 coding or Advanced Audio Coding (AAC) is not 
reported. It is important to mention that sign inversion, volume 
gain and lossy compression are real world scenarios. Neither 
viability of the system nor the number of users is reported. To the 
best of our knowledge, it is the only work about collusion-attack 
resistant fingerprinting in audio signals. Although there are several 
works about audio fingerprinting in the literature, almost all of 
them do not consider the collusion-attack [29–33]. 

On the other hand, most of the works about collusion-attack 
resistant fingerprinting systems are devoted to digital images 
mainly based in Spread Spectrum techniques. The main drawback 
of fingerprinting schemes based in SS techniques is their high 
computational complexity as it is discussed in the Introduction. In 
order to achieve lower computational complexity than SS-

fingerprinting schemes for digital images, in [18] it is proposed 
to utilize PN-modulated orthogonal sequences. These orthogonal 
sequences can be obtained from DCT or DFT basis. In the DCT 
case, each user is related to a DCT matrix column which is defined 
in equation (26). Therefore, the SS sequence for the ith user 
becomes: 

wi ~b:pn(s)6DCT(i) ð1Þ 

where b is a robustness factor, pn(s) is a PN sequence generated 
using an initial value s, s is a secret key, DCT(i) is the ith DCT 
matrix column and 6 is the element-wise multiplication. The 
sequence wi is embedded into the frequency components of a 
digital medium, in this paper audio signals. As an example, Figure 
1 shows the SS sequence, w1890, for the user 1890 of 2048 and 
b~1. 

Unlike other watermarking applications, in the fingerprinting 
paradigm, detection is usually carried out in a non-blind fashion 
[34], i.e. the original signal is available to the detector. Under that 
condition, after subtracting the original sequence from the pirate 

~ copy the sequence wi is obtained. In order to carry out the 
~ 

detection the sequence d is obtained by applying the Inverse DCT 
~ to wi which is demodulated by the PN sequence pn(s) as follows: 

~ 
d~InverseDCT(pn(s)6w~ 

i) ð2Þ 

where InverseDCT(.) denotes a fast inverse discrete cosine 
transform algorithm as described in the Materials and Methods 

~ 
section. Figure 2 shows the corresponding d for detection of the 
user 1890 out of 2048, as exemplified above. 

From Figure 2, it is possible to observe that a threshold is 
necessary in order to determine the user under a statistical point of 

~ 2view. If d is supposed to be N(0,s ) except for a fingerprinted 
component dd~k, it is possible to calculate a threshold T according to 
the probability of false detection Pfa [18] as follows: 

T 
Pfaƒ 

1 
erfc( pffiffiffiffiffiffiffi ) ð3Þ 

2 2s2 

where erfc(:) is the complementary error function defined as: 

ð ?2 2erfc(x)~ pffiffiffi exp({u )du ð4Þ 
p x 

Therefore, the threshold is given by the expression (5), 

pffiffiffiffiffiffiffi 
2T~ 2s erfc{1(2Pfa) ð5Þ 

where erfc{1(.) stands for the inverse complementary error 
function. 

Grouping a set of users has been proposed in the literature as a 
solution to high computational costs [8,16]. The assumption 
behind this proposal is that users who have a similar background 
and region are more likely to collude each other. In [18] the idea 
of introducing dependency between two SS sequences by 
exploiting the property of quasi-orthogonality of PN sequences is 
proposed. Thus, the fingerprint is integrated by two spread 
spectrum sequences related to a group ID wig and an user ID wiu 

as follows: 

wig ~bg 
:pn(s)6DCT(ig) ð6Þ 

where b is the robustness factor for groups, pn(s) is a PNg 

sequence generated with the secret key s, DCT(ig) is the ith basis 
vector that identified to the ith group and 

wiu ~bu 
:pn(ig)6DCT(iu) ð7Þ 

where b is the robustness factor for users, pn(ig) is a PNu 

sequence corresponding to the ith group, and DCT(iu) is the ith 
basis vector that identified the ith user. 

Then, the fingerprint assigned to the jth user of the ith group is 
conformed by: 
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Figure 1. Spread spectrum sequence for the user 1890 of 2048. 
doi:10.1371/journal.pone.0065985.g001 

The energy of the fingerprint is represented by 

wi,j ~wju zwig ð8Þ 
b2 ~b2 zb2: ð9Þ g u 

From equation (8) it is easy to see that a couple of detectors is 
required, one for the spread spectrum sequence related to group 

~ 
Figure 2. d for detection of the user 1890 of 2048. 
doi:10.1371/journal.pone.0065985.g002 
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Figure 3. ODG region for fingerprinted audio clips. 
doi:10.1371/journal.pone.0065985.g003 

ID wig and other for the user ID wju 
. These detectors are derived 

from equation (2) as follows: 
For group ID detection: 

~ 
dg ~InverseDCT(pn(s)6w~ 

i,j) ð10Þ 

and for user ID detection: 

~ 
du ~InverseDCT(pn(ig)6w~ 

i,j) ð11Þ 

with thresholds, Tg and Tu, derived according to equation (5) as 
follows: 

qffiffiffiffiffiffiffiffi 
2Tg ~ 2s erfc{1(2Pfag ) ð12Þ g 

qffiffiffiffiffiffiffi 
2Tu ~ 2s erfc{1(2Pfau ) ð13Þ u 

where Pfag and Pfau are given false positive probabilities for the 
2 2group and user ID detection procedures respectively. s g and s u 

are the variance of the group and user ID detection sequences 
respectively. 

The outline of the paper is as follows: First, experimental results 
and discussion are offered. In the Materials and Methods section, 
we recall the Modulated Complex Lapped Transform and 

Discrete Cosine Transform and their fast algorithms used in this 
work. In the Fingerprinting System section steps are described 
comprising audio fingerprinting method by DCT modulation in 
the MCLT domain. Finally, conclusions are offered. 

Results and Discussion 

The proposed audio fingerprinting system is evaluated under 
averaging collusion attacks. Through abundant experiments; the 
operation parameters are determinate too. For experimentations, 
CD-quality audio files are utilized from a set of 1000 popular 
music recordings. The probability of false detection is set to 10{6 

for both group (Pfag ) and user ID detection (Pfau ) procedures, as 
this is a typical value in audio spread spectrum-based watermark

ing systems [11]. 

Fingerprint Robustness Determination 
In order to determinate the adequate b and b values ing u 

equations (6) and (7); an audio transparency metric is utilized, the 
Objective Difference Grade (ODG) [35]. An ODG value between 
0 and 21 is considered a good perceptual transparency [35]. In 
the experiment, several audio clips are fingerprinted with different 
combinations of b and b values and the ODG metric for each g u 

combination is obtained. The limit for practical b and b values is g u 

determinate for ODG§{1 as the bigger the fingerprint energy b 
the lower the ODG value. In the spread spectrum watermarking, it 
is well known that the bigger the watermark energy the bigger the 
watermark robustness [2]. Therefore, it is interesting to investigate 
the biggest fingerprint energy values that maintain a good 
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Table 1. ODG values for combinations of b and b values.g u 

bg /bu 0.0008 0.0009 0.0010 0.0011 0.0012 0.0013 0.0014 0.0015 0.0016 0.0017 0.0018 0.0019 0.0020 0.0021 0.0022 

0.0008 –0.38 –0.41 –0.47 –0.53 –0.61 –0.64 –0.69 –0.71 –0.74 –0.78 –0.83 –0.84 –0.88 –0.94 –0.95 

0.0009 –0.43 –0.49 –0.61 –0.65 –0.67 –0.69 –0.72 –0.73 –0.77 –0.85 –0.86 –0.90 –0.94 –0.95 –0.96 

0.0010 –0.55 –0.61 –0.64 –0.66 –0.67 –0.75 –0.79 –0.82 –0.84 –0.86 –0.87 –0.93 –0.95 –0.96 –0.97 

0.0011 –0.61 –0.70 –0.72 –0.73 –0.74 –0.76 –0.82 –0.83 –0.85 –0.87 –0.89 –0.94 –0.96 –0.97 –0.98 

0.0012 –0.69 –0.72 –0.73 –0.75 –0.76 –0.80 –0.82 –0.85 –0.87 –0.89 –0.92 –0.95 –0.95 –0.98 –1.00 

0.0013 –0.73 –0.74 –0.75 –0.77 –0.80 –0.81 –0.84 –0.87 –0.88 –0.91 –0.92 –0.96 –0.97 –0.99 –1.01 

0.0014 –0.76 –0.75 –0.77 –0.79 –0.81 –0.84 –0.86 –0.88 –0.91 –0.92 –0.94 –0.95 –0.97 –1.00 –1.01 

0.0015 –0.78 –0.79 –0.80 –0.82 –0.84 –0.86 –0.88 –0.91 –0.93 –0.94 –0.95 –0.96 –0.99 –1.02 –1.03 

0.0016 –0.80 –0.80 –0.83 –0.84 –0.86 –0.87 –0.90 –0.92 –0.94 –0.95 –0.96 –0.98 –1.01 –1.01 –1.04 

0.0017 –0.82 –0.84 –0.87 –0.87 –0.88 –0.90 –0.92 –0.95 –0.95 –0.97 –0.97 –0.99 –1.02 –1.03 –1.05 

0.0018 –0.86 –0.87 –0.88 –0.90 –0.93 –0.93 –0.95 –0.98 –0.98 –0.99 –1.01 –1.01 –1.04 –1.04 –1.06 

0.0019 –0.90 –0.91 –0.92 –0.94 –0.95 –0.95 –0.97 –1.00 –1.00 –1.01 –1.02 –1.02 –1.04 –1.08 –1.09 

0.0020 –0.92 –0.93 –0.94 –0.95 –0.97 –0.97 –1.01 –1.02 –1.04 –1.05 –1.06 –1.05 –1.06 –1.09 –1.09 

0.0021 –0.96 –0.96 –0.98 –0.99 –1.00 –1.01 –1.02 –1.03 –1.05 –1.06 –1.07 –1.06 –1.07 –1.10 –1.11 

0.0022 –0.98 –0.99 –1.00 –1.00 –1.02 –1.03 –1.05 –1.05 –1.07 –1.06 –1.07 –1.06 –1.07 –1.10 –1.11 

doi:10.1371/journal.pone.0065985.t001 

perceptual transparency. Figure 3 shows the ODG region for an sequence must be higher than the group ID PN-sequence, i.e. 
average of 10 sets of 225 fingerprinted audio clips. b wb . Under that asseveration, combinationsu g

In order to provide a reference for practical b and b values, (b ~0:0012,b ~0:0022), (b ~0:0014,b ~0:0021),g u g u g u 

Table 1 shows the corresponding ODG values for combinations of (b ~0:0015,b ~0:0020) and (b ~0:0017,b ~0:0019) seem to g u g u 
b and b values.g u be good candidates for fingerprint embedding. 

Figure 4 shows the collusion-attack robustness for the combi

nation with the higher acceptable b and the combination with the g Block Length Influence 
higher acceptable bu, with colluders from the same group and From Figure 4 it is possible to observe that in the best case, 
block length, M~2048. It is interesting to note that the detection (bg ~0:0012,bu ~0:0022), the number of detected colluders 
performance is better when the robustness factor for users is appears low for practical applications. In order to improve the 
greater than the robustness factor for groups, i.e. b wb ,u g performance of the proposed system, the influence of the block 
moreover, according to [17], users in a group are more likely to length, M, is investigated. Collusion-attack robustness is studied 
collude with each other, therefore, the number of group IDs for different block lengths and Figure 5 shows the results for such 
involved in a pirate copy must be smaller than the number of study. 
colluder IDs. As a consequence, the energy of the user ID PN-

Figure 4. Collusion-attack robustness for (bg ~0:0012,bu ~0:0022) Figure 5. Collusion-attack robustness for several block length, 
and (b ~0:0022,b ~0:0011).g u M. 
doi:10.1371/journal.pone.0065985.g004 doi:10.1371/journal.pone.0065985.g005 
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Figure 6. Detection rate of colluders in function of block 
length, M. 
doi:10.1371/journal.pone.0065985.g006 

The higher block length the higher collusion-attack robustness. 
However, for M~32768 the increase in performance is not 
significant in comparison with M~16384 as it can be seen in 
Figure 5. Moreover, the computing resources for computing FFT 
in the MCLT and DCT transforms can be critical for some 
platforms when the number of points is larger [36]. Therefore, 
M~16384, seems to be the best option as it is possible to detect 
more colluders users from the totality of them. Figure 6 shows the 
detection rate of colluders in function of block length, M. This 
confirms what mentioned from results in Figure 5. 

Implementation Issues 
In this subsection, the viability of the proposed system is 

addressed. It can be interesting to measure the computing time of 
fingerprint embedding and detection as a function of the block 
sizes as several block sizes have been studied. Table 2 shows time 
requirements for several block sizes in real-time terms. It is 
interesting to point out that the computing complexity increases 
very slightly when the block size increases in two-power factor. 

According to Table 2, an 80 min. music album can be 
fingerprinted in about 2.37 min. (80=33:68) which could be 
attractive for on-line music distribution services. 

Let Ngc be the number of groups of colluders involved in a 
pirate copy, it is necessary Ngc z1 detection process operations in 
order to find all of the colluders as one detection process is utilized 
for group IDs detection and 1 detection process for each detected 
group in order to identify colluder user IDs. As an example, if an 
80 min. music album is pirated by 40 users from 5 groups, the 
colluders detection in the whole album requires about 15.3 min. 

Table 2. Time requirements for several block sizes. 

((5z1) * (80=31:36)) which seems to be a non-prohibitive amount 
of time for commercial applications. Moreover, if the number of 
colluders is higher but the number of groups is the same, the 
computational complexity will be maintained about 15.3 min. as it 
only depends of number of detected groups. 

Audio Clip Requirements for IDs Detection 
Due to the nature of the fingerprint insertion process, it is 

possible to assume that it is not necessary the whole audio clip in 
the detection process. The IDs detection is carried out by a 
counter of events that exceed thresholds, therefore, if there are 
enough events the system achieves its maximum detection 
capacity. This is expected to happen after a certain number of 
events and after the behavior of the detector goes stable. In order 
to validate that claim, the next experiment was carried out: a set of 
audio clips were fingerprinted with different IDs, and a pirate copy 
was generated for 2 to 50 colluders; for 1 to 55 seconds of the 
audio clip ID detection is executed and detected colluders are 
counted. This experimentation was carried out with 100 different 
pirate audio clips with M~16384 and their results are averaged. 
Figure 7 shows the detector behavior in function of pirate audio 
clip duration and number of colluders. 

It is interesting to observe that the curve remains without 
notable changes from 26 seconds to 55 seconds. In other 
experimentation, using several 30 seconds pirate audio clips, the 
detector capacity is the same as compared with detection using the 
whole pirate audio clips, which corroborates the behavior shown 
in Figure 7. On the other hand, according to Figure 8, for a 
probability of colluders detection equal to 1, the detector behavior 
is practically the same for durations longer that 2 seconds. 

Lossy Compression Attack 
In order to validate the proposed system in a practical scenario, 

robustness to collusion attack after lossy compression is explored. 
Advanced Audio Coding (AAC) is used for experimentation as it 
has shown better performance in perceptual transparency and 
compression rates terms as compared with MPEG-1 and MPEG-2 
Audio Layer 3 [37]. The block length utilized in the experiment is 
M~16384, and the number of audio clips involved is 225. Figure 
9 shows the detector performance under collusion attack after 
AAC compression for several bitrates. 

It is possible to see from Figure 9 that the lower AAC bitrate the 
lower performance. Figure 10 shows the detection probability of 
colluded attacked audio clip after AAC compression for several 
bitrates. The detector performance reduces about 12% after high 
quality lossy compression; which is competitive for real work 
environments. 

Gain and Inverse Attack 
It is well known that SS watermarking is strong against gain 

attack, however, in order to corroborate that claim an experiment 

Block Size Fingerprint embedding (real-time) Fingerprint detection (real-time) 

2048 38.04x 33.24x 

4096 36.23x 32.50x 

8192 35.65x 32.39x 

16384 33.68x 31.36x 

doi:10.1371/journal.pone.0065985.t002 
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Figure 7. Colluders detection in function of pirate audio clip duration. 
doi:10.1371/journal.pone.0065985.g007 

Figure 8. Probability of colluders detection for several pirate audio clip durations. 
doi:10.1371/journal.pone.0065985.g008 
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Figure 9. Collusion-attack robustness for several AAC bitrates. 
doi:10.1371/journal.pone.0065985.g009 

was carried out. After several pirate audio clips were uniformly 
scaled in the range [0.5,1.5] in 0.1 steps, the detector performance 
was the same for all of the scaled values. 

Due to the linearity of the embedding domain, when the sign of 
the pirate audio signal is inverted, the same happens in the 
embedding domain. Therefore, in order to guarantee the correct 
detection in an inverse attack scenario, the ID in a block is counted 
when correlation value is bigger that thresholds Tg and Tu or 
lower that {Tg and {Tu, which is a very small change to the 
detector. This claim was corroborated with several experiments 
where, in the presence of the inverse attack, the detector 
performance is not altered 

Comparison 
To the best of our knowledge, the work reported in [24] is the 

only one addressing the collusion-resistant fingerprinting problem 
with audio signals. Table 3 shows a detailed feature comparison of 
the proposed system against that proposed in [24]. As it was 
described in the Related Work section, the work reported in [24] is 

Figure 10. Detection rate of colluders in function of several 
AAC bitrates. 
doi:10.1371/journal.pone.0065985.g010 

not robust against sign inversion attack whereas, according to the 
results described in the Results and Discussion section, the 
proposed system is robust against this type of attack. A very 
common real-world audio processing operation is volume gain, the 
proposed system is able to resist this processing while the work 
reported in [24] does not. Moreover, unlike [24], this paper 
reports results for lossy compression and system viability, which 
are real-world scenarios as music distribution is nowadays in 
compressed format and real-time. Comparing the work reported 
in [24] with the proposed system in terms of detection probability 
per number of colluders is a difficult task as it is unclear which 
value of false alarm, Pfa, is considered in that work. The 
aforementioned work lacks in a statistical analysis of the system 
performance, therefore, a deepest comparison with the proposed 
system can be biased. 

Summary of Results 
In this paper, a block-based approach for fingerprinting is 

considered. This consideration is due to two facts: 1) a frequency 
transform for a full typical audio clip is practically intractable and 
2) if the fingerprint is replied each block, then, for detection is not 
necessary the full pirate audio signal. As a consequence of the 
block-based approach, the detection is carried out according to the 
half-normal distribution. Through experimentation, it was shown 
that about 1 second of CD-quality pirate audio signal is enough for 
probability of colluders detection equal to 1. 

The optimal energy for user and group ID fingerprints in 
function of ODG metric is also studied. It was observed that the 
bigger user ID fingerprint energy, b , the better detectionu

performance. This characteristic is interesting because users in a 
group are more likely to collude with each other [17], therefore; 
the number of group IDs involved in a pirate copy must be minor 
to the number of colluder IDs. 

The impact in the fingerprint detection process of the block 
length was investigated through experimentation. It was observed 
that the higher block length the higher collusion-attack robustness. 

214However, for a block length bigger than samples the 
performance improvement is not significative. Moreover, for a 
bigger block length the needed computing resources are also 
bigger and even intractable for some platforms. 

For validation purposes, the proposed fingerprinting system was 
implemented in an standard modern computer using free libraries. 
The performance is guaranteed to be several times better that the 
real-time restriction. The proposed system viability is demonstrat

ed. 
Finally, the robustness of the proposed system to typical attacks 

in real-world scenarios, such as lossy compression, gain and 
inverse attacks, was shown. Then results suggest that the proposed 
fingerprinting system is suitable for practical applications, there

fore, attractive for the music industry. 

Materials and Methods 

Due to the proposed fingerprinting system utilizes the DCT 
basis as fingerprint modulators and the insertion domain is the set 
of MCLT magnitudes, in this section are recalled two Fast Fourier 
Transform (FFT)-based fast algorithms for MCLT and DCT 
calculations which are utilized for the proposed fingerprinting 
system implementation. 

Modulated Complex Lapped Transform 
The Modulated Complex Lapped Transform (MCLT) is a 

particular kind of a 2x oversampled generalized DFT filter bank 
proposed in [38] whose basis are: 
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Table 3. Comparison between the proposed work and [24]. 

RobustnessAlgorithm 

doi:10.1371/journal.pone.0065985.t003 

p(n,k)~pc(n,k){jps(n,k) ð14Þ 

ffiffiffiffiffiffir 
2 

pc(n,k)~h(n) 
M 

cos (phase) ð15Þ 

ffiffiffiffiffiffir 
2 

ps(n,k)~h(n) 
M 

sin (phase) ð16Þ 

with: 

h(n)~{ sin½(nz 
1 
2 

) 
p 

2M
] ð17Þ 

and 

phase~(nz 
Mz1 

2 
)(kz 

1 
2 

) 
p 

M 
ð18Þ 

where n is the time-domain index, k is the frequency-domain pffiffiffiffiffiffiffiffi 
index, M is the sample block length and j~ {1. The MCLT 
coefficients of the input vector x are calculated as 
X (k)~Xc(k){jXs(k) with: 

2M{1 
Xc(k) ~ x(n)pc(n,k), 

n~0 

P 
ð19Þ 

2M{1
 
Xs(k) ~ x(n)ps(n,k)
 

n~0
 

P 

Fast MCLT Algorithm. In [39] it was proposed a FFT-based 
fast MCLT algorithm. The MCLT coefficients X (k) can be 
obtained as follows: 

X (k)~jV(k)zV (kz1) ð20Þ 

where 

V (k) ~c(k)U(k) 

c(k) ~W8(2kz1)W4M (k) ð21Þ qffiffiffiffiffiffi 2M{1 P 
1U(k) ~ x(n)W2M (kn)

2M 
n~0 

Lossy compression Inverse sign Volume gain 

Tirkel et al. [24] no no no not reported not reported 

Proposed high quality yes yes M2 yes 

Number of users System viability 

and WM (r) is the common notation for the complex exponen

tial used in Fourier transforms, namely: 

{j2pr 
WM (r)~ exp ( ) ð22Þ 

M 

U(k) is a 2M point FFT with orthonormal basis function of the 
input block x(n), which means that MCLT coefficients can be 
computed by computing FFT of x(n) to obtain U(k) and carring 
out the operations with factors c(k). 

Fast Inverse MCLT Algorithm. In order to carry out the 
inverse MCLT, in [39] is developed the next relation: 

Figure 11. Fingerprint embedding system. 
doi:10.1371/journal.pone.0065985.g011 
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Figure 12. Colluder detection system. 
doi:10.1371/journal.pone.0065985.g012 

c * (k)
Y (k)~	 ½X (k{1){jX (k)] ð23Þ 

4 

where X (k) are the MCLT coefficients, the superscript * denotes 
complex conjugation, and the modulation c(k) is the same as that 
in (21). Using (23) we compute the M first FFT coefficients of y(n), 
but it is well known that FFT coefficients must satisfy the conjugate 
symmetry property: 

Y (2M{k)~Y * (k) ð24Þ 

Finally, we know that Y (0) and Y (M) must be real-valued, and 
after some manipulations: 

1Y (0) ~ p	ffiffi ½<fX (0)gz=fX (0)g]
8 ð25Þ 

1Y (M) ~{ pffiffi ½<fX (M{1)gz=fX (M{1)g]
8

with < and = taking the real and imaginary parts, respectively. 

Discrete Cosine Transform 
The Discrete Cosine Transform (DCT) is a linear and invertible 

function in the Real Numbers set, originally derived from 
Chebyshev polynomials [40]. The DCT basis are orthogonal 
and defined as follows: 

rffiffiffiffiffiffi 
2 1 kp 

a(n,k)~c(k) cos½(nz ) ] ð26Þ 
M 2 M

where 

( pffiffiffi 
1= 2 if k~0 

c(k)~	 ð27Þ 
1 otherwise 

Fast DCT and Inverse-DCT Algorithms. It is known that 
the Fourier transform of a real-even function f ({x)~f (x) is real-

even, and i times the Fourier transform of a real-odd function 
f ({x)~{f (x) is real-odd, thus for these symmetry conditions it 
is not necessary to use complex inputs/output. Therefore, it is 
possible to compute the DCT or the Discrete Sine Transform 
(DST) by utilizing an FFT algorithm. 

Let be the input vector x(n~0::M{1) even around n~{0:5 
and even around n~M{0:5, it is possible to show that DFT(x) is  
the non-normalized DCT of x, YnonO(k) described as follows: 

M{1 

YnonO(k)~2 x(n) cos½(nz 
1

) 
kp] ð28Þ 

X 
2 M

n~0 
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Figure 13. Group IDs detection system. 
doi:10.1371/journal.pone.0065985.g013 

with basis: 

b(n,k)~2 cos½(nz 
1 
2 

) 
kp 
M
] ð29Þ 

The basis set described in equation (29) is non-orthogonal, 
therefore, it is necessary to normalize equation (28) in order to get 
the orthogonal transform as follows: 

( pffiffiffiffiffiffiffiffi 
(1= 4M)YnonO(k) if k~0 

YO(k)~ pffiffiffiffiffiffiffiffi ð30Þ 
(1= 2M)YnonO(k) otherwise 

On the other hand, let be the input vector Y (k~0::M{1) 
even around k~0 and odd around k~M, it is possible to show 
that DFT(Y ) is the non-normalized Inverse DCT of Y , xnonO(n) 
described as follows: 

M{1 

xnonO(n)~Y (0)z2 Y (k) cos½(nz 
1

) 
kp] ð31Þ 

X 
2 M

k~1 

As in equation (28), it is necessary a normalization procedure in 
order to get the orthogonal transform. The normalization is 
carried out as follows: 

1 
xO(k)~ p	ffiffiffiffiffiffiffiffi xnonO(n) ð32Þ 

2M 

In the literature, fast algorithms for the DFT have been 
extensively reported and very efficient software libraries exist [41]. 
In this work, these libraries are utilized as a module of the DCT 
and MCLT computing, reducing the effort required for efficient 
implementation to a butterfly stage implementation for MCLT 
and a normalization stage implementation for DCT. 

The Fingerprinting System 
The frequency domain for embedding is the Modulated Lapped 

Complex Transform (MCLT). In order to bring perceptual 
transparency, the fingerprint is embedded into MCLT magnitudes 
while keeping phases without changes. 

Fingerprint Embedding. Instead of [18,19], in this paper 
the fingerprint is replicated several times along the audio signal in 
a block-processing fashion as typical CD-quality music clips are 
conformed by about 8 million of samples and the embedding/ 
detecting process can become intractable if an orthogonal 
transform is applied to the whole audio clip. Moreover, by 
splitting the audio signals in blocks for fingerprinting it is possible 
to detect colluders with a fraction of the whole audio clip which is 
demonstrated in the Results section. Each samples-block is 50% 
overlapped as the MCLT is a lapped transform. Due to MCLT is 
a 2x oversampled DFT filter bank, 2M audio samples are required 
in order to compute M MCLT coefficients. Figure 11 shows a 
block diagram of the embedding system. 

The fingerprint embedding process is carried out as follows: 
firstly host audio signal is divided into frames of 2M samples per 
frame. Next, each frame is transformed using the MCLT. 
Subsequently both magnitude and phase of MCLT are computed. 
The fingerprint is then added to the MCLT magnitudes while 
keeping phase without change. The additive technique is utilized 
for embedding as follows: 

X̂X~Xzwi,j,	 ð33Þ 

^where XX is the fingerprinted MCLT magnitude, X is the 
original MCLT magnitude and wi,j is the fingerprint assigned to 
the jth user of the ith group. Finally, inverse MCLT is applied to 
both processed magnitude and original phase to get the audio 
signal with hidden fingerprint. The fingerprint is conformed 
according to equation (8), the secret key s provides the system 
security in a symmetric-key fashion. The iu and ig variables 
represent the authorized user and its group respectively. The PN-

Generators produce pseudo-noise with an uniform distribution. 
Fingerprint Detection. Figure 12 shows the colluders 

detection system. In fingerprinting systems is a common assump

tion to get access to the original media. That consideration is taken 
into account for the proposed system. 

Detection procedure is carried out in a block fashion as the 
fingerprint is embedded in the same way. In this paper, a detection 
strategy using several MCLT magnitude blocks is proposed. 

Group ID Detection. Figure 13 shows the group IDs 
detection system. For each available MCLT coefficients block, 
group detection is carried out according to the threshold, Tg, 
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Figure 14. Distribution of the counter vector Cg. 
doi:10.1371/journal.pone.0065985.g014 

Figure 15. Half-normal distribution. 
doi:10.1371/journal.pone.0065985.g015 
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Figure 16. User IDs detection system. 
doi:10.1371/journal.pone.0065985.g016 

described in equation (12). For the whole pirate audio clip, there is 
a counter vector Cg that registers the number of times that each 

~ 
component of dg exceeds Tg. 

Instead of the group ID detection in each block where the 
threshold is computed assuming a Gaussian distribution, the 
threshold, Tcg , for detection in the counter vector Cg must 
consider other distribution as the lower limit of that distribution 
will always be zero. In order to know the statistical behavior of 
the counter vector Cg, 120 different fingerprinted audio clips are 
utilized. Figure 14 shows the distribution of the counter vector 
Cg. 

As can be seen from Figure 14, Cg can be modeled by the Half-

normal distribution, which is defined as follows: 

rffiffiffiffiffiffiffiffi 
22 y

f (y; s)~ exp ({ )yw0 ð34Þ 
2	 2s p 2s

with cumulative distribution function F (y; s) as follows, 

rffiffiffiffiffiffiffiffi ð y 22 x 
F (y; s)~ exp ({ )dx ð35Þ 

2	 2s p 2s0 

For a given threshold, T , the false detection probability Pfa, is  
computed by subtracting the cumulative distribution function to 
the unit as follows: 

rffiffiffiffiffiffiffiffi ð T 2 y2 

Pfa ~1{ exp ({ )dy ð36Þ 
2	 2s p 2s0 

Figure 15 shows the Pfa for a given threshold T in a Half-

normal distribution. pffiffiffiffiffiffiffi 
Using a change of variable z~y=( 2s2) in equation (35) it 

becomes: 

pffiffiffiffiffiffi Ð 2y=( 2s )2F (y; s) ~ pffiffi exp ({z2)dz 
p 0 ð37Þ 

y~erf( pffiffiffiffiffiffi )
22s

where erf(.) is the error function and is related to the 
complementary error function as: 

erfc(x)~1{erf(x) ð38Þ 

From equations (36), (37) and (38); the false detection 
probability Pfa for a given threshold T can be rewritten as: 

T 
Pfa ~erfc( p	ffiffiffiffiffiffiffi ) ð39Þ 

2s2 

Therefore, the threshold, TCg for a Pfa given for a group ID 
detection in a pirate audio clip can be computed as follows: 

qffiffiffiffiffiffiffiffiffiffi 
2TCg ~ 2sCg 

erfc{1(Pfa) ð40Þ 

2where s is the variance of Cg.Cg 

User ID Detection. Figure 16 shows the user ID detection 
system. In similar form that group ID detection, for each available 
MCLT coefficients block, user detection is carried out according 
to the threshold, Tu, described in equation (13). For the whole 
pirate audio clip, there is a counter vector Cu that registers the 

~ 
number of times that each component of du exceeds Tu. Counter 
vector Cu is modeled as a Half-normal distribution and the 
corresponding threshold TCu for a given Pfa is calculated 
according to: 

qffiffiffiffiffiffiffiffiffiffi 
2TCu ~ 2sCu 

erfc{1(Pfa) ð41Þ 

2where sCu is the variance of Cu. In order to improve user ID 
detection, the interference due to group ID is previously removed. 
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Number of Users. Due to fingerprints are formed by two 
DCT modulated PN-sequences, the number of possible IDs for 
each of them is equal to their respective lengths, M for both. 
Therefore, the maximum number of possible users of the system is 
M2 . 

Software Implementation 
Audio signals are processed as vectors of float numbers in the 

range ½{1,1). For audio file manipulations the libsndfile library 
[42] is used. The entire fingerprinting system was implemented in 
C language in a Intel Core i7 CPU and 8 GB RAM. The compiler 
used in this work is GCC version 4.2.1 and the operating system is 
Mac Os X version 10.7.5. The programs are compiled with -o3 
optimization flag. In order to compute the FFT for the fast MCLT 
and DCT algorithms described above, the FFTW library [41] is 
utilized. 

FFTW is an optimized library that implements most of the 
variants of the Discrete Fourier Transform. Moreover, FFTW is 
able to exploit the Message Passing Interface (MPI) and multi-

threaded strategies in order to utilize the full power of modern 
personal computers. Due to the computer used for validation of 
the proposed fingerprinting system is a multi-core shared-memory 
computer, the instantiation of FFTW is carried out using multi-

threaded calls. 
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